blob: 6fbf686458636c0804146cf33c5c074943c2507c [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert NR % 4 == 0
$assert EXTOPT in ["SHLAND", "ZIP", "MOVL"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/gemm.h>
void xnn_bf16_gemm_minmax_ukernel_${MR}x${NR}c8__neonfma_${EXTOPT.lower()}(
size_t mr,
size_t nc,
size_t kc,
const void* restrict a,
size_t a_stride,
const void* restrict w_ptr,
void* restrict c,
size_t cm_stride,
size_t cn_stride,
const union xnn_bf16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(uint16_t) == 0);
assert(a != NULL);
assert(w_ptr != NULL);
assert(c != NULL);
const uint16_t* a0 = (const uint16_t*) a;
uint16_t* c0 = (uint16_t*) c;
$for M in range(1, MR):
const uint16_t* a${M} = (const uint16_t*) ((uintptr_t) a${M-1} + a_stride);
uint16_t* c${M} = (uint16_t*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
const uint16_t* w = (const uint16_t*) w_ptr;
$if EXTOPT == "SHLAND":
const uint16x8_t vmask = vreinterpretq_u16_u32(vmovq_n_u32(UINT32_C(0xFFFF0000)));
$elif EXTOPT == "ZIP":
const uint16x8_t vzero = vmovq_n_u16(0);
do {
$for N in range(NR):
float32x4_t vacc0x${ABC[N]} = vreinterpretq_f32_u32(vshll_n_u16(vld1_lane_u16(w, vdup_n_u16(0), 0), 16)); w += 1;
$for M in range(1, MR):
$for N in range(NR):
float32x4_t vacc${M}x${ABC[N]} = vacc0x${ABC[N]};
size_t k = kc;
for (; k >= 8 * sizeof(uint16_t); k -= 8 * sizeof(uint16_t)) {
$for M in range(MR):
const uint16x8_t va${M} = vld1q_u16(a${M}); a${M} += 8;
$for N in range(NR):
const uint16x8_t vb${ABC[N]} = vld1q_u16(w); w += 8;
$for M in range(MR):
$if EXTOPT == "SHLAND":
const float32x4_t va${M}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(va${M}), 16));
$elif EXTOPT == "ZIP":
const float32x4_t va${M}e = vreinterpretq_f32_u16(vzip1q_u16(vzero, va${M}));
$for N in range(NR):
$if EXTOPT == "SHLAND":
const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(vb${ABC[N]}), 16));
$elif EXTOPT == "ZIP":
const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u16(vzip1q_u16(vzero, vb${ABC[N]}));
$for N in range(NR):
$for M in range(MR):
vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}e, vb${ABC[N]}e);
$for M in range(MR):
$if EXTOPT == "SHLAND":
const float32x4_t va${M}o = vreinterpretq_f32_u16(vandq_u16(va${M}, vmask));
$elif EXTOPT == "ZIP":
const float32x4_t va${M}o = vreinterpretq_f32_u16(vzip2q_u16(vzero, va${M}));
$for N in range(NR):
$if EXTOPT == "SHLAND":
const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vandq_u16(vb${ABC[N]}, vmask));
$elif EXTOPT == "ZIP":
const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vzip2q_u16(vzero, vb${ABC[N]}));
$for N in range(NR):
$for M in range(MR):
vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}o, vb${ABC[N]}o);
}
if XNN_UNLIKELY(k != 0) {
$for M in range(MR):
const uint16x8_t va${M} = vld1q_u16(a${M}); a${M} = (const uint16_t*) ((uintptr_t) a${M} + k);
$for N in range(NR):
const uint16x8_t vb${ABC[N]} = vld1q_u16(w); w += 8;
$for N in range(NR):
const uint16x8_t vm${ABC[N]} = vceqq_u16(vb${ABC[N]}, vmovq_n_u16(0));
$for N in range(NR):
$if EXTOPT == "SHLAND":
const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(vb${ABC[N]}), 16));
$elif EXTOPT == "ZIP":
const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u16(vzip1q_u16(vzero, vb${ABC[N]}));
$for N in range(NR):
$for M in range(MR):
const uint16x8_t va${M}x${ABC[N]} = vbicq_u16(va${M}, vm${ABC[N]});
$for N in range(NR):
$for M in range(MR):
$if EXTOPT == "SHLAND":
const float32x4_t va${M}x${ABC[N]}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(va${M}x${ABC[N]}), 16));
$elif EXTOPT == "ZIP":
const float32x4_t va${M}x${ABC[N]}e = vreinterpretq_f32_u16(vzip1q_u16(vzero, va${M}x${ABC[N]}));
$for N in range(NR):
$for M in range(MR):
vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}x${ABC[N]}e, vb${ABC[N]}e);
$for N in range(NR):
$if EXTOPT == "SHLAND":
const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vandq_u16(vb${ABC[N]}, vmask));
$elif EXTOPT == "ZIP":
const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vzip2q_u16(vzero, vb${ABC[N]}));
$for N in range(NR):
$for M in range(MR):
$if EXTOPT == "SHLAND":
const float32x4_t va${M}x${ABC[N]}o = vreinterpretq_f32_u16(vandq_u16(va${M}x${ABC[N]}, vmask));
$elif EXTOPT == "ZIP":
const float32x4_t va${M}x${ABC[N]}o = vreinterpretq_f32_u16(vzip2q_u16(vzero, va${M}x${ABC[N]}));
$for N in range(NR):
$for M in range(MR):
vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}x${ABC[N]}o, vb${ABC[N]}o);
}
#if XNN_ARCH_ARM64
$for N in range(0, NR, 2):
$for M in range(MR):
const float32x4_t vacc${M}x${ABC[N:N+2]} = vpaddq_f32(vacc${M}x${ABC[N]}, vacc${M}x${ABC[N+1]});
$for N in range(0, NR, 4):
$for M in range(MR):
float32x4_t vacc${M}x${ABC[N:N+4]} = vpaddq_f32(vacc${M}x${ABC[N:N+2]}, vacc${M}x${ABC[N+2:N+4]});
#else
$for N in range(NR):
$for M in range(MR):
const float32x2_t vsum${M}x${ABC[N]} = vadd_f32(vget_low_f32(vacc${M}x${ABC[N]}), vget_high_f32(vacc${M}x${ABC[N]}));
$for N in range(0, NR, 4):
$for M in range(MR):
float32x4_t vacc${M}x${ABC[N:N+4]} = vcombine_f32(vpadd_f32(vsum${M}x${ABC[N]}, vsum${M}x${ABC[N+1]}), vpadd_f32(vsum${M}x${ABC[N+2]}, vsum${M}x${ABC[N+3]}));
#endif
const float32x4_t vmax = vld1q_dup_f32(&params->scalar.max);
$for N in range(0, NR, 4):
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = vminq_f32(vacc${M}x${ABC[N:N+4]}, vmax);
const float32x4_t vmin = vld1q_dup_f32(&params->scalar.min);
$for N in range(0, NR, 4):
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = vmaxq_f32(vacc${M}x${ABC[N:N+4]}, vmin);
$for N in range(0, NR, 4):
$for M in range(MR):
uint16x4_t vout${M}x${ABC[N:N+4]} = vshrn_n_u32(vreinterpretq_u32_f32(vacc${M}x${ABC[N:N+4]}), 16);
if XNN_LIKELY(nc >= ${NR}) {
$for M in range(MR):
vst1_u16(c${M}, vout${M}x${ABC[0:4]});
$for N in range(4, NR, 4):
vst1_u16(c${M} + ${N}, vout${M}x${ABC[N:N+4]});
c${M} = (uint16_t*) ((uintptr_t) c${M} + cn_stride);
$for M in range(MR):
a${M} = (const uint16_t*) ((uintptr_t) a${M} - kc);
nc -= ${NR};
} else {
$for LOG2N in reversed(range(NR.bit_length())):
$if NR != 1 << LOG2N:
if (nc & ${1 << LOG2N}) {
$if LOG2N >= 2:
$for N in range(0, 1 << LOG2N, 4):
$for M in range(MR):
vst1_u16(c${M}, vout${M}x${ABC[N:N+4]}); c${M} += 4;
$for M in range(MR):
$for N in range(0, 1 << (LOG2N - 1), 4):
vout${M}x${ABC[N:N+4]} = vout${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+4]};
$elif LOG2N == 1:
$for M in range(MR):
vst1_lane_u32((void*) c${M}, vreinterpret_u32_u16(vout${M}x${ABC[0:4]}), 0); c${M} += 2;
$for M in range(MR):
vout${M}x${ABC[0:4]} = vext_u16(vout${M}x${ABC[0:4]}, vout${M}x${ABC[0:4]}, 2);
$elif LOG2N == 0:
$for M in range(MR):
vst1_lane_u16(c${M}, vout${M}x${ABC[0:4]}, 0);
}
nc = 0;
}
} while (nc != 0);
}