| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert CHANNEL_TILE % 8 == 0 |
| $assert KERNEL_TILE >= 2 |
| $assert ACCUMULATORS >= 1 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/dwconv.h> |
| #include <xnnpack/intrinsics-polyfill.h> |
| |
| |
| void xnn_f16_dwconv_minmax_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__fma3${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( |
| size_t channels, |
| size_t output_width, |
| const void** input, |
| const void* weights, |
| void* output, |
| size_t input_stride, |
| size_t output_increment, |
| size_t input_offset, |
| const void* zero, |
| const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(channels != 0); |
| assert(output_width != 0); |
| |
| const __m256 vmax = _mm256_load_ps(params->avx.max); |
| const __m256 vmin = _mm256_load_ps(params->avx.min); |
| |
| uint16_t* o = (uint16_t*) output; |
| do { |
| $for K in range(KERNEL_TILE): |
| const uint16_t* i${K} = input[${K}]; |
| assert(i${K} != NULL); |
| if XNN_UNPREDICTABLE(i${K} != zero) { |
| i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset); |
| } |
| input = (const void**) ((uintptr_t) input + input_stride); |
| |
| size_t c = channels; |
| const uint16_t* w = weights; |
| for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
| __m256 vacc${ABC[0:8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); |
| $for C in range(8, CHANNEL_TILE, 8): |
| __m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${C}))); |
| |
| $for K in range(KERNEL_TILE): |
| |
| const __m256 vi${K}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K})); |
| $for C in range(8, CHANNEL_TILE, 8): |
| const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C}))); |
| i${K} += ${CHANNEL_TILE}; |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_TILE + C}))); |
| $for C in range(0, CHANNEL_TILE, 8): |
| $if 1 <= K < ACCUMULATORS: |
| __m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_NO_EXC)); |
| $else: |
| vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_NO_EXC)); |
| |
| w += ${(KERNEL_TILE + 1) * CHANNEL_TILE}; |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| $for C in range(0, CHANNEL_TILE, 8): |
| vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_NO_EXC)); |
| $ACC_SLICE *= 2 |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| __m256 vacc${ABC[C:C+8]} = _mm256_max_ps(vacc${ABC[C:C+8]}p0, vmin); |
| $for C in range(0, CHANNEL_TILE, 8): |
| vacc${ABC[C:C+8]} = _mm256_min_ps(vacc${ABC[C:C+8]}, vmax); |
| |
| _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vacc${ABC[0:8]}, _MM_FROUND_NO_EXC)); |
| $for C in range(8, CHANNEL_TILE, 8): |
| _mm_storeu_si128((__m128i*) (o + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}, _MM_FROUND_NO_EXC)); |
| o += ${CHANNEL_TILE}; |
| } |
| $if CHANNEL_TILE > 8: |
| for (; c >= 8; c -= 8) { |
| __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); |
| $for K in range(KERNEL_TILE): |
| |
| const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K})); |
| i${K} += 8; |
| |
| const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_TILE}))); |
| $if 1 <= K < ACCUMULATORS: |
| __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_NO_EXC)); |
| $else: |
| vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_NO_EXC)); |
| |
| w += 8; |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc${ABC[0:8]}p0 |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_NO_EXC)); |
| $ACC_SLICE *= 2 |
| |
| __m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin); |
| vacc01234567 = _mm256_min_ps(vacc01234567, vmax); |
| |
| _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vacc01234567, _MM_FROUND_NO_EXC)); |
| o += 8; |
| } |
| if XNN_UNLIKELY(c != 0) { |
| assert(c >= 1); |
| assert(c <= 7); |
| |
| __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); |
| $for K in range(KERNEL_TILE): |
| |
| const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K})); |
| |
| const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_TILE}))); |
| $if 1 <= K < ACCUMULATORS: |
| __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_NO_EXC)); |
| $else: |
| vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_NO_EXC)); |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc${ABC[0:8]}p0 |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_NO_EXC)); |
| $ACC_SLICE *= 2 |
| |
| __m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin); |
| vacc01234567 = _mm256_min_ps(vacc01234567, vmax); |
| |
| __m128i vh01234567 = _mm256_cvtps_ph(vacc01234567, _MM_FROUND_NO_EXC); |
| if (c & 4) { |
| _mm_storel_epi64((__m128i*) o, vh01234567); |
| vh01234567 = _mm_unpackhi_epi64(vh01234567, vh01234567); |
| o += 4; |
| } |
| if (c & 2) { |
| _mm_storeu_si32(o, vh01234567); |
| vh01234567 = _mm_srli_epi64(vh01234567, 32); |
| o += 2; |
| } |
| if (c & 1) { |
| *o = (uint16_t) _mm_extract_epi16(vh01234567, 0); |
| o += 1; |
| } |
| } |
| |
| o = (uint16_t*) ((uintptr_t) o + output_increment); |
| } while (--output_width != 0); |
| } |