| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert CHANNEL_TILE % 8 == 0 |
| $assert KERNEL_TILE >= 2 |
| $assert ACCUMULATORS >= 1 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/dwconv.h> |
| |
| |
| void xnn_f16_dwconv_minmax_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__neonfp16arith${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( |
| size_t channels, |
| size_t output_width, |
| const void** input, |
| const void* weights, |
| void* output_ptr, |
| size_t input_stride, |
| size_t output_increment, |
| size_t input_offset, |
| const void* zero, |
| const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(channels != 0); |
| assert(output_width != 0); |
| |
| __fp16* output = (__fp16*) output_ptr; |
| const float16x8_t vmax = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neon.max)); |
| const float16x8_t vmin = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neon.min)); |
| do { |
| $for K in range(KERNEL_TILE): |
| const __fp16* i${K} = (const __fp16*) input[${K}]; |
| assert(i${K} != NULL); |
| if XNN_UNPREDICTABLE(i${K} != (const __fp16*) zero) { |
| i${K} = (const __fp16*) ((uintptr_t) i${K} + input_offset); |
| } |
| |
| input = (const void**) ((uintptr_t) input + input_stride); |
| |
| size_t c = channels; |
| const __fp16* w = (const __fp16*) weights; |
| for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
| $for C in range(0, CHANNEL_TILE, 8): |
| float16x8_t vacc${ABC[C:C+8]}p0 = vld1q_f16(w); w += 8; |
| |
| $for K in range(KERNEL_TILE): |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| const float16x8_t vi${K}x${ABC[C:C+8]} = vld1q_f16(i${K}); i${K} += 8; |
| $for C in range(0, CHANNEL_TILE, 8): |
| const float16x8_t vk${K}x${ABC[C:C+8]} = vld1q_f16(w); w += 8; |
| $for C in range(0, CHANNEL_TILE, 8): |
| $if 1 <= K < ACCUMULATORS: |
| float16x8_t vacc${ABC[C:C+8]}p${K} = vmulq_f16(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}); |
| $else: |
| vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = vfmaq_f16(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}); |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 |
| $ACC_STEP = 1 |
| $while ACC_STEP < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_STEP * 2): |
| $if A + ACC_STEP < ACCUMULATORS: |
| $for C in range(0, CHANNEL_TILE, 8): |
| vacc${ABC[C:C+8]}p${A} = vaddq_f16(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_STEP}); |
| $ACC_STEP *= 2 |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| float16x8_t vacc${ABC[C:C+8]} = vmaxq_f16(vacc${ABC[C:C+8]}p0, vmin); |
| $for C in range(0, CHANNEL_TILE, 8): |
| vacc${ABC[C:C+8]} = vminq_f16(vacc${ABC[C:C+8]}, vmax); |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| vst1q_f16(output, vacc${ABC[C:C+8]}); output += 8; |
| } |
| $if CHANNEL_TILE > 8: |
| for (; c >= 8; c -= 8) { |
| float16x8_t vacc01234567p0 = vld1q_f16(w); w += 8; |
| |
| $for K in range(KERNEL_TILE): |
| |
| const float16x8_t vi${K}x01234567 = vld1q_f16(i${K}); i${K} += 8; |
| const float16x8_t vk${K}x01234567 = vld1q_f16(w + ${(K + 1) * CHANNEL_TILE - 8}); |
| $if 1 <= K < ACCUMULATORS: |
| float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567); |
| $else: |
| vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567); |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc01234567p0 |
| $ACC_STEP = 1 |
| $while ACC_STEP < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_STEP * 2): |
| $if A + ACC_STEP < ACCUMULATORS: |
| vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP}); |
| $ACC_STEP *= 2 |
| |
| float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin); |
| vacc01234567 = vminq_f16(vacc01234567, vmax); |
| |
| vst1q_f16(output, vacc01234567); output += 8; |
| } |
| if XNN_UNLIKELY(c != 0) { |
| $if CHANNEL_TILE == 8: |
| float16x8_t vacc01234567p0 = vld1q_f16(w); w += 8; |
| $else: |
| float16x8_t vacc01234567p0 = vld1q_f16(w); |
| |
| $for K in range(KERNEL_TILE): |
| |
| const float16x8_t vi${K}x01234567 = vld1q_f16(i${K}); |
| $if CHANNEL_TILE == 8: |
| const float16x8_t vk${K}x01234567 = vld1q_f16(w); w += 8; |
| $else: |
| const float16x8_t vk${K}x01234567 = vld1q_f16(w + ${(K + 1) * CHANNEL_TILE}); |
| $if 1 <= K < ACCUMULATORS: |
| float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567); |
| $else: |
| vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567); |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc01234567p0 |
| $ACC_STEP = 1 |
| $while ACC_STEP < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_STEP * 2): |
| $if A + ACC_STEP < ACCUMULATORS: |
| vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP}); |
| $ACC_STEP *= 2 |
| |
| float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin); |
| vacc01234567 = vminq_f16(vacc01234567, vmax); |
| |
| float16x4_t vacc0123 = vget_low_f16(vacc01234567); |
| if (c & 4) { |
| vst1_f16(output, vacc0123); output += 4; |
| vacc0123 = vget_high_f16(vacc01234567); |
| } |
| if (c & 2) { |
| vst1_lane_u32((void*) output, vreinterpret_u32_f16(vacc0123), 0); output += 2; |
| vacc0123 = vext_f16(vacc0123, vacc0123, 2); |
| } |
| if (c & 1) { |
| vst1_lane_f16(output, vacc0123, 0); output += 1; |
| } |
| } |
| |
| output = (__fp16*) ((uintptr_t) output + output_increment); |
| } while (--output_width != 0); |
| } |