| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert PIXEL_TILE >= 1 |
| $assert PIXEL_TILE % 4 == 0 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/ibilinear.h> |
| |
| |
| void xnn_f16_ibilinear_chw_ukernel__neonfp16arith_p${PIXEL_TILE}( |
| size_t output_pixels, |
| size_t channels, |
| const void**restrict input, |
| size_t input_offset, |
| const void*restrict weights, |
| void*restrict output, |
| size_t input_increment) XNN_OOB_READS |
| { |
| assert(output_pixels != 0); |
| assert(channels != 0); |
| assert(input_increment % sizeof(__fp16) == 0); |
| |
| __fp16* o = (__fp16*) output; |
| do { |
| const __fp16** i = (const __fp16**)input; |
| const __fp16* w = weights; |
| size_t p = output_pixels; |
| |
| $if PIXEL_TILE > 4: |
| for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) { |
| $for P in range(PIXEL_TILE): |
| const __fp16* itl${ABC[P]} = (const __fp16*) ((uintptr_t) i[${2 * P}] + input_offset); |
| const __fp16* ibl${ABC[P]} = (const __fp16*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
| i += 2 * ${PIXEL_TILE}; |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const float16x4x2_t vw${ABC[P:P+4]} = vld2_f16(w + ${2 * P}); |
| w += 2 * ${PIXEL_TILE}; |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| float16x8_t vtltr${ABC[P:P+4]} = vmovq_n_f16(0); // vmov for uninitialized var warning |
| float16x8_t vblbr${ABC[P:P+4]} = vmovq_n_f16(0); |
| $for L in range(0, 4): |
| vtltr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) itl${ABC[P+L]}, vreinterpretq_u32_f16(vtltr${ABC[P:P+4]}), ${L})); |
| vblbr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) ibl${ABC[P+L]}, vreinterpretq_u32_f16(vblbr${ABC[P:P+4]}), ${L})); |
| |
| $for P in range(0, PIXEL_TILE, 8): |
| const float16x8_t valphah${ABC[P:P+8]} = vcombine_f16(vw${ABC[P:P+4]}.val[0], vw${ABC[P+4:P+8]}.val[0]); |
| const float16x8_t valphav${ABC[P:P+8]} = vcombine_f16(vw${ABC[P:P+4]}.val[1], vw${ABC[P+4:P+8]}.val[1]); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const float16x8_t vldrd${ABC[P:P+4]} = vsubq_f16(vblbr${ABC[P:P+4]}, vtltr${ABC[P:P+4]}); |
| |
| $for P in range(0, PIXEL_TILE, 8): |
| const float16x8x2_t vld_t${ABC[P:P+8]} = vuzpq_f16(vldrd${ABC[P:P+4]}, vldrd${ABC[P+4:P+8]}); |
| const float16x8_t vld${ABC[P:P+8]} = vld_t${ABC[P:P+8]}.val[0]; |
| const float16x8_t vrd${ABC[P:P+8]} = vld_t${ABC[P:P+8]}.val[1]; |
| |
| $for P in range(0, PIXEL_TILE, 8): |
| const float16x8x2_t vtl_t${ABC[P:P+8]} = vuzpq_f16(vtltr${ABC[P:P+4]}, vtltr${ABC[P+4:P+8]}); |
| const float16x8_t vtl${ABC[P:P+8]} = vtl_t${ABC[P:P+8]}.val[0]; |
| const float16x8_t vtr${ABC[P:P+8]} = vtl_t${ABC[P:P+8]}.val[1]; |
| |
| $for P in range(0, PIXEL_TILE, 8): |
| const float16x8_t vl${ABC[P:P+8]} = vfmaq_f16(vtl${ABC[P:P+8]}, vld${ABC[P:P+8]}, valphav${ABC[P:P+8]}); |
| const float16x8_t vr${ABC[P:P+8]} = vfmaq_f16(vtr${ABC[P:P+8]}, vrd${ABC[P:P+8]}, valphav${ABC[P:P+8]}); |
| |
| $for P in range(0, PIXEL_TILE, 8): |
| const float16x8_t vd${ABC[P:P+8]} = vsubq_f16(vr${ABC[P:P+8]}, vl${ABC[P:P+8]}); |
| $for P in range(0, PIXEL_TILE, 8): |
| const float16x8_t vo${ABC[P:P+8]} = vfmaq_f16(vl${ABC[P:P+8]}, vd${ABC[P:P+8]}, valphah${ABC[P:P+8]}); |
| |
| $for P in range(0, PIXEL_TILE, 8): |
| vst1q_f16(o + ${P}, vo${ABC[P:P+8]}); |
| o += ${PIXEL_TILE}; |
| } |
| |
| for (; p >= 4; p -= 4) { |
| $for P in range(4): |
| const __fp16* itl${ABC[P]} = (const __fp16*) ((uintptr_t) i[${2 * P}] + input_offset); |
| const __fp16* ibl${ABC[P]} = (const __fp16*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
| i += 8; |
| |
| const float16x4x2_t vw = vld2_f16(w); |
| w += 8; |
| |
| float16x8_t vtltr = vmovq_n_f16(0); // vmov for uninitialized var warning |
| float16x8_t vblbr = vmovq_n_f16(0); |
| $for P in range(0, 4): |
| vtltr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) itl${ABC[P]}, vreinterpretq_u32_f16(vtltr), ${P})); |
| vblbr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) ibl${ABC[P]}, vreinterpretq_u32_f16(vblbr), ${P})); |
| |
| const float16x4_t valphah = vw.val[0]; |
| const float16x4_t valphav = vw.val[1]; |
| |
| const float16x8_t vldrd = vsubq_f16(vblbr, vtltr); |
| |
| const float16x4x2_t vld_t = vuzp_f16(vget_low_f16(vldrd), vget_high_f16(vldrd)); |
| const float16x4_t vld = vld_t.val[0]; |
| const float16x4_t vrd = vld_t.val[1]; |
| |
| const float16x4x2_t vtl_t = vuzp_f16(vget_low_f16(vtltr), vget_high_f16(vtltr)); |
| const float16x4_t vtl = vtl_t.val[0]; |
| const float16x4_t vtr = vtl_t.val[1]; |
| |
| const float16x4_t vl = vfma_f16(vtl, vld, valphav); |
| const float16x4_t vr = vfma_f16(vtr, vrd, valphav); |
| |
| const float16x4_t vd = vsub_f16(vr, vl); |
| const float16x4_t vo = vfma_f16(vl, vd, valphah); |
| |
| vst1_f16(o, vo); |
| o += 4; |
| } |
| |
| if XNN_UNLIKELY(p != 0) { |
| if (p & 2) { |
| $for P in range(2): |
| const __fp16* itl${ABC[P]} = (const __fp16*) ((uintptr_t) i[${2 * P}] + input_offset); |
| const __fp16* ibl${ABC[P]} = (const __fp16*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
| i += 4; |
| |
| const float16x4_t vw = vld1_f16(w); |
| w += 4; |
| |
| const float16x4x2_t vwhv = vuzp_f16(vw, vw); |
| const float16x4_t valphah = vwhv.val[0]; |
| const float16x4_t valphav = vwhv.val[1]; |
| |
| float16x4_t vtltr = vmov_n_f16(0); // vmov for uninitialized var warning |
| float16x4_t vblbr = vmov_n_f16(0); |
| |
| $for P in range(0, 2): |
| vtltr = vreinterpret_f16_u32(vld1_lane_u32((const void*) itl${ABC[P]}, vreinterpret_u32_f16(vtltr), ${P})); |
| vblbr = vreinterpret_f16_u32(vld1_lane_u32((const void*) ibl${ABC[P]}, vreinterpret_u32_f16(vblbr), ${P})); |
| |
| const float16x4_t vldrd = vsub_f16(vblbr, vtltr); |
| |
| const float16x4x2_t vld_t = vuzp_f16(vldrd, vldrd); |
| const float16x4_t vld = vld_t.val[0]; |
| const float16x4_t vrd = vld_t.val[1]; |
| |
| const float16x4x2_t vtl_t = vuzp_f16(vtltr, vtltr); |
| const float16x4_t vtl = vtl_t.val[0]; |
| const float16x4_t vtr = vtl_t.val[1]; |
| |
| const float16x4_t vl = vfma_f16(vtl, vld, valphav); |
| const float16x4_t vr = vfma_f16(vtr, vrd, valphav); |
| |
| const float16x4_t vd = vsub_f16(vr, vl); |
| const float16x4_t vo = vfma_f16(vl, vd, valphah); |
| |
| vst1_lane_u32((void*) o, vreinterpret_u32_f16(vo), 0); |
| o += 2; |
| } |
| |
| if (p & 1) { |
| // We are computing the following formula: |
| // result = (1 - alpha_h) * (1 - alpha_v) * top_left + |
| // alpha_h * (1 - alpha_v) * top_right + |
| // (1 - alpha_h) * alpha_v * bottom_left + |
| // alpha_h * alpha_v * bottom_right. |
| // |
| // Rearranging gives |
| // result = left + alpha_h * (right - left), |
| // where |
| // left = top_left + alpha_v * (bottom_left - top_left), |
| // right = top_right + alpha_v * (bottom_right - top_right). |
| |
| const __fp16* itl = (const __fp16*) ((uintptr_t) i[0] + input_offset); |
| const __fp16* ibl = (const __fp16*) ((uintptr_t) i[1] + input_offset); |
| i += 2; |
| |
| float16x4_t vw = vmov_n_f16(0); |
| vw = vreinterpret_f16_u32(vld1_lane_u32((const void*) w, vreinterpret_u32_f16(vw), 0)); |
| w += 2; |
| |
| const float16x4x2_t vwhv = vuzp_f16(vw, vw); |
| const float16x4_t valphah = vwhv.val[0]; |
| const float16x4_t valphav = vwhv.val[1]; |
| |
| float16x4_t vtltr = vmov_n_f16(0); // vmov for uninitialized var warning |
| float16x4_t vblbr = vmov_n_f16(0); |
| |
| vtltr = vreinterpret_f16_u32(vld1_lane_u32((const void*) itl, vreinterpret_u32_f16(vtltr), 0)); |
| vblbr = vreinterpret_f16_u32(vld1_lane_u32((const void*) ibl, vreinterpret_u32_f16(vblbr), 0)); |
| |
| const float16x4_t vldrd = vsub_f16(vblbr, vtltr); |
| |
| const float16x4x2_t vld_t = vuzp_f16(vldrd, vldrd); |
| const float16x4_t vld = vld_t.val[0]; |
| const float16x4_t vrd = vld_t.val[1]; |
| |
| const float16x4x2_t vtl_t = vuzp_f16(vtltr, vtltr); |
| const float16x4_t vtl = vtl_t.val[0]; |
| const float16x4_t vtr = vtl_t.val[1]; |
| |
| const float16x4_t vl = vfma_f16(vtl, vld, valphav); |
| const float16x4_t vr = vfma_f16(vtr, vrd, valphav); |
| |
| const float16x4_t vd = vsub_f16(vr, vl); |
| const float16x4_t vo = vfma_f16(vl, vd, valphah); |
| |
| vst1_lane_f16(o, vo, 0); |
| o += 1; |
| } |
| } |
| |
| input_offset += input_increment; |
| } while (--channels != 0); |
| } |