| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert BATCH_TILE % 8 == 0 |
| $assert BATCH_TILE >= 8 |
| $SIMD_TILE = BATCH_TILE // 8 |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/intrinsics-polyfill.h> |
| #include <xnnpack/vunary.h> |
| |
| |
| void xnn_f16_velu_ukernel__avx2_rr1_p3_x${BATCH_TILE}( |
| size_t n, |
| const void* input, |
| void* output, |
| const union xnn_f16_elu_params params[restrict XNN_MIN_ELEMENTS(1)]) |
| { |
| assert(n % sizeof(uint16_t) == 0); |
| |
| const __m256 vprescale = _mm256_load_ps(params->avx2_rr1_p3.prescale); |
| const __m256 vsat_cutoff = _mm256_load_ps(params->avx2_rr1_p3.sat_cutoff); |
| const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p3.magic_bias); |
| const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p3.log2e); |
| const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p3.minus_ln2); |
| const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p3.c3); |
| const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p3.c2); |
| const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p3.c1); |
| const __m256 valpha = _mm256_load_ps(params->avx2_rr1_p3.alpha); |
| const __m256 vbeta = _mm256_load_ps(params->avx2_rr1_p3.beta); |
| |
| const uint16_t* i = (const uint16_t*) input; |
| uint16_t* o = (uint16_t*) output; |
| $if BATCH_TILE > 8: |
| for (; n >= ${BATCH_TILE} * sizeof(uint16_t); n -= ${BATCH_TILE} * sizeof(uint16_t)) { |
| __m256 vx0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
| $for N in range(1, SIMD_TILE): |
| __m256 vx${N} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8}))); |
| i += ${BATCH_TILE}; |
| |
| $for N in range(SIMD_TILE): |
| const __m256 vz${N} = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx${N}, vprescale)); |
| |
| $for N in range(SIMD_TILE): |
| __m256 vn${N} = _mm256_fmadd_ps(vz${N}, vlog2e, vmagic_bias); |
| |
| $for N in range(SIMD_TILE): |
| __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${N}), 23)); |
| vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias); |
| |
| $for N in range(SIMD_TILE): |
| __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2, vz${N}); |
| |
| $for N in range(SIMD_TILE): |
| __m256 vp${N} = _mm256_fmadd_ps(vc3, vt${N}, vc2); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1); |
| vt${N} = _mm256_mul_ps(vt${N}, valpha); |
| |
| $for N in range(SIMD_TILE): |
| vt${N} = _mm256_mul_ps(vt${N}, vs${N}); |
| vs${N} = _mm256_fmsub_ps(vs${N}, valpha, valpha); |
| |
| $for N in range(SIMD_TILE): |
| const __m256 ve${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vs${N}); |
| vx${N} = _mm256_mul_ps(vx${N}, vbeta); |
| |
| $for N in range(SIMD_TILE): |
| const __m256 vy${N} = _mm256_blendv_ps(vx${N}, ve${N}, vx${N}); |
| |
| _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy0, _MM_FROUND_NO_EXC)); |
| $for N in range(1, SIMD_TILE): |
| _mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vy${N}, _MM_FROUND_NO_EXC)); |
| o += ${BATCH_TILE}; |
| } |
| for (; n >= 8 * sizeof(uint16_t); n -= 8 * sizeof(uint16_t)) { |
| __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
| i += 8; |
| |
| const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale)); |
| |
| __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
| __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
| |
| __m256 vp = _mm256_fmadd_ps(vc3, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| vt = _mm256_mul_ps(vt, valpha); |
| vt = _mm256_mul_ps(vt, vs); |
| vs = _mm256_fmsub_ps(vs, valpha, valpha); |
| const __m256 ve = _mm256_fmadd_ps(vp, vt, vs); |
| vx = _mm256_mul_ps(vx, vbeta); |
| const __m256 vy = _mm256_blendv_ps(vx, ve, vx); |
| |
| _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy, _MM_FROUND_NO_EXC)); |
| o += 8; |
| } |
| if XNN_UNLIKELY(n != 0) { |
| assert(n >= 1 * sizeof(uint16_t)); |
| assert(n <= 7 * sizeof(uint16_t)); |
| __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
| |
| const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale)); |
| |
| __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
| __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
| |
| __m256 vp = _mm256_fmadd_ps(vc3, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| vt = _mm256_mul_ps(vt, valpha); |
| vt = _mm256_mul_ps(vt, vs); |
| vs = _mm256_fmsub_ps(vs, valpha, valpha); |
| const __m256 ve = _mm256_fmadd_ps(vp, vt, vs); |
| vx = _mm256_mul_ps(vx, vbeta); |
| const __m256 vy = _mm256_blendv_ps(vx, ve, vx); |
| |
| __m128i vh = _mm256_cvtps_ph(vy, _MM_FROUND_NO_EXC); |
| if (n & (4 * sizeof(uint16_t))) { |
| _mm_storel_epi64((__m128i*) o, vh); |
| vh = _mm_unpackhi_epi64(vh, vh); |
| o += 4; |
| } |
| if (n & (2 * sizeof(uint16_t))) { |
| _mm_storeu_si32(o, vh); |
| vh = _mm_srli_epi64(vh, 32); |
| o += 2; |
| } |
| if (n & (1 * sizeof(uint16_t))) { |
| *o = (uint16_t) _mm_extract_epi16(vh, 0); |
| } |
| } |
| } |