| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert BATCH_TILE % 8 == 0 |
| $assert BATCH_TILE >= 8 |
| $SIMD_TILE = BATCH_TILE // 8 |
| #include <assert.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/vunary.h> |
| |
| |
| void xnn_f16_velu_ukernel__neonfp16arith_rr1_p3_x${BATCH_TILE}( |
| size_t n, |
| const void* input, |
| void* output, |
| const union xnn_f16_elu_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(n != 0); |
| assert(n % sizeof(__fp16) == 0); |
| |
| const float16x8_t vprescale = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neonfp16arith_rr1_p3.prescale)); |
| const float16x8_t vsat_cutoff = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neonfp16arith_rr1_p3.sat_cutoff)); |
| const float16x8_t vmagic_bias = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neonfp16arith_rr1_p3.magic_bias)); |
| const float16x8_t vlog2e = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neonfp16arith_rr1_p3.log2e)); |
| const float16x8_t vminus_ln2 = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neonfp16arith_rr1_p3.minus_ln2)); |
| const float16x8_t vc3 = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neonfp16arith_rr1_p3.c3)); |
| const float16x8_t vc2 = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neonfp16arith_rr1_p3.c2)); |
| const float16x8_t vminus_alpha = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neonfp16arith_rr1_p3.minus_alpha)); |
| const float16x8_t vbeta = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->neonfp16arith_rr1_p3.beta)); |
| |
| const __fp16* i = (const __fp16*) input; |
| __fp16* o = (__fp16*) output; |
| $if BATCH_TILE > 8: |
| for (; n >= ${BATCH_TILE} * sizeof(__fp16); n -= ${BATCH_TILE} * sizeof(__fp16)) { |
| $for N in range(SIMD_TILE): |
| float16x8_t vx${N} = vld1q_f16(i); i += 8; |
| |
| $for N in range(SIMD_TILE): |
| float16x8_t vz${N} = vmulq_f16(vx${N}, vprescale); |
| |
| $for N in range(SIMD_TILE): |
| vz${N} = vmaxq_f16(vz${N}, vsat_cutoff); |
| |
| $for N in range(SIMD_TILE): |
| float16x8_t vn${N} = vfmaq_f16(vmagic_bias, vz${N}, vlog2e); |
| |
| $for N in range(SIMD_TILE): |
| float16x8_t vs${N} = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn${N}), 10)); |
| vn${N} = vsubq_f16(vn${N}, vmagic_bias); |
| |
| $for N in range(SIMD_TILE): |
| float16x8_t vt${N} = vfmaq_f16(vz${N}, vn${N}, vminus_ln2); |
| |
| $for N in range(SIMD_TILE): |
| float16x8_t vp${N} = vfmaq_f16(vc2, vc3, vt${N}); |
| vp${N} = vmulq_f16(vp${N}, vt${N}); |
| |
| $for N in range(SIMD_TILE): |
| vt${N} = vmulq_f16(vt${N}, vs${N}); |
| vs${N} = vfmsq_f16(vminus_alpha, vs${N}, vminus_alpha); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = vfmaq_f16(vt${N}, vp${N}, vt${N}); |
| |
| $for N in range(SIMD_TILE): |
| float16x8_t ve${N} = vfmsq_f16(vs${N}, vp${N}, vminus_alpha); |
| const uint16x8_t vm${N} = vcltq_s16(vreinterpretq_s16_f16(vx${N}), vmovq_n_s16(0)); |
| |
| $for N in range(SIMD_TILE): |
| vx${N} = vmulq_f16(vx${N}, vbeta); |
| |
| $for N in range(SIMD_TILE): |
| const float16x8_t vy${N} = vbslq_f16(vm${N}, ve${N}, vx${N}); |
| |
| $for N in range(SIMD_TILE): |
| vst1q_f16(o, vy${N}); o += 8; |
| } |
| for (; n >= 8 * sizeof(__fp16); n -= 8 * sizeof(__fp16)) { |
| float16x8_t vx = vld1q_f16(i); i += 8; |
| float16x8_t vz = vmulq_f16(vx, vprescale); |
| vz = vmaxq_f16(vz, vsat_cutoff); |
| |
| float16x8_t vn = vfmaq_f16(vmagic_bias, vz, vlog2e); |
| float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10)); |
| vn = vsubq_f16(vn, vmagic_bias); |
| float16x8_t vt = vfmaq_f16(vz, vn, vminus_ln2); |
| |
| float16x8_t vp = vfmaq_f16(vc2, vc3, vt); |
| vp = vmulq_f16(vp, vt); |
| vt = vmulq_f16(vt, vs); |
| vs = vfmsq_f16(vminus_alpha, vs, vminus_alpha); |
| vp = vfmaq_f16(vt, vp, vt); |
| float16x8_t ve = vfmsq_f16(vs, vp, vminus_alpha); |
| |
| const uint16x8_t vm = vcltq_s16(vreinterpretq_s16_f16(vx), vmovq_n_s16(0)); |
| vx = vmulq_f16(vx, vbeta); |
| const float16x8_t vy = vbslq_f16(vm, ve, vx); |
| vst1q_f16(o, vy); o += 8; |
| } |
| if XNN_UNLIKELY(n != 0) { |
| float16x8_t vx = vld1q_f16(i); i += 8; |
| float16x8_t vz = vmulq_f16(vx, vprescale); |
| vz = vmaxq_f16(vz, vsat_cutoff); |
| |
| float16x8_t vn = vfmaq_f16(vmagic_bias, vz, vlog2e); |
| float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10)); |
| vn = vsubq_f16(vn, vmagic_bias); |
| float16x8_t vt = vfmaq_f16(vz, vn, vminus_ln2); |
| |
| float16x8_t vp = vfmaq_f16(vc2, vc3, vt); |
| vp = vmulq_f16(vp, vt); |
| vt = vmulq_f16(vt, vs); |
| vs = vfmsq_f16(vminus_alpha, vs, vminus_alpha); |
| vp = vfmaq_f16(vt, vp, vt); |
| float16x8_t ve = vfmsq_f16(vs, vp, vminus_alpha); |
| |
| const uint16x8_t vm = vcltq_s16(vreinterpretq_s16_f16(vx), vmovq_n_s16(0)); |
| vx = vmulq_f16(vx, vbeta); |
| float16x8_t vy = vbslq_f16(vm, ve, vx); |
| float16x4_t vy_lo = vget_low_f16(vy); |
| if (n & (4 * sizeof(__fp16))) { |
| vst1_f16(o, vy_lo); o += 4; |
| vy_lo = vget_high_f16(vy); |
| } |
| if (n & (2 * sizeof(__fp16))) { |
| vst1_lane_u32((void*) o, vreinterpret_u32_f16(vy_lo), 0); o += 2; |
| vy_lo = vext_f16(vy_lo, vy_lo, 2); |
| } |
| if (n & (1 * sizeof(__fp16))) { |
| vst1_lane_f16(o, vy_lo, 0); |
| } |
| } |
| } |