blob: 664472ee970487d320707777455f219ffa4106ba [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert ROW_TILE >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/math.h>
#include <xnnpack/vmulcaddc.h>
void xnn_f16_vmulcaddc_minmax_ukernel_c${CHANNEL_TILE}__fma3_${ROW_TILE}x(
size_t rows,
size_t channels,
const void*restrict input,
size_t input_stride,
const void*restrict weights,
void*restrict output,
size_t output_stride,
const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(rows != 0);
assert(channels != 0);
assert(channels % sizeof(uint16_t) == 0);
const uint16_t* i0 = (const uint16_t*) input;
uint16_t* o0 = (uint16_t*) output;
$for M in range(1, ROW_TILE):
const uint16_t* i${M} = (const uint16_t*) ((uintptr_t) i${M-1} + input_stride);
uint16_t* o${M} = (uint16_t*) ((uintptr_t) o${M-1} + output_stride);
const size_t input_increment = input_stride * ${ROW_TILE} - channels;
const size_t output_increment = output_stride * ${ROW_TILE} - channels;
const __m256 vmin = _mm256_load_ps(params->avx.min);
const __m256 vmax = _mm256_load_ps(params->avx.max);
do {
$for M in range(1, ROW_TILE):
$if M % 2 == 0:
if XNN_UNPREDICTABLE(rows <= ${M}) {
i${M} = i${M-1};
o${M} = o${M-1};
}
$else:
if XNN_UNPREDICTABLE(rows < ${M+1}) {
i${M} = i${M-1};
o${M} = o${M-1};
}
const uint16_t* w = (const uint16_t*) weights;
size_t c = channels;
$if CHANNEL_TILE > 8:
for (; c >= ${CHANNEL_TILE} * sizeof(uint16_t); c -= ${CHANNEL_TILE} * sizeof(uint16_t)) {
const __m256 vscale${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w));
$for C in range(8, CHANNEL_TILE, 8):
const __m256 vscale${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${C})));
$for M in range(ROW_TILE):
__m256 vacc${M}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M}));
$for C in range(8, CHANNEL_TILE, 8):
__m256 vacc${M}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${M} + ${C})));
i${M} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vbias${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${CHANNEL_TILE + C})));
w += ${2 * CHANNEL_TILE};
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
vacc${M}x${ABC[C:C+8]} = _mm256_fmadd_ps(vacc${M}x${ABC[C:C+8]}, vscale${ABC[C:C+8]}, vbias${ABC[C:C+8]});
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
vacc${M}x${ABC[C:C+8]} = _mm256_max_ps(vacc${M}x${ABC[C:C+8]}, vmin);
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
vacc${M}x${ABC[C:C+8]} = _mm256_min_ps(vacc${M}x${ABC[C:C+8]}, vmax);
$for M in range(ROW_TILE):
_mm_storeu_si128((__m128i*) o${M}, _mm256_cvtps_ph(vacc${M}x${ABC[0:8]}, _MM_FROUND_NO_EXC));
$for C in range(8, CHANNEL_TILE, 8):
_mm_storeu_si128((__m128i*) (o${M} + ${C}), _mm256_cvtps_ph(vacc${M}x${ABC[C:C+8]}, _MM_FROUND_NO_EXC));
o${M} += ${CHANNEL_TILE};
}
for (; c >= 8 * sizeof(uint16_t); c -= 8 * sizeof(uint16_t)) {
const __m256 vscale = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w));
$for M in range(ROW_TILE):
__m256 vacc${M} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M}));
i${M} += 8;
const __m256 vbias = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${CHANNEL_TILE})));
w += ${8 if CHANNEL_TILE > 8 else CHANNEL_TILE * 2};
$for M in range(ROW_TILE):
vacc${M} = _mm256_fmadd_ps(vacc${M}, vscale, vbias);
$for M in range(ROW_TILE):
vacc${M} = _mm256_max_ps(vacc${M}, vmin);
$for M in range(ROW_TILE):
vacc${M} = _mm256_min_ps(vacc${M}, vmax);
$for M in range(ROW_TILE):
_mm_storeu_si128((__m128i*) o${M}, _mm256_cvtps_ph(vacc${M}, _MM_FROUND_NO_EXC));
o${M} += 8;
}
if XNN_UNLIKELY(c != 0) {
const __m256 vscale = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w));
$for M in range(ROW_TILE):
__m256 vacc${M} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M}));
i${M} = (const uint16_t*) ((uintptr_t) i${M} + c);
const __m256 vbias = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${CHANNEL_TILE})));
$for M in range(ROW_TILE):
vacc${M} = _mm256_fmadd_ps(vacc${M}, vscale, vbias);
$for M in range(ROW_TILE):
vacc${M} = _mm256_max_ps(vacc${M}, vmin);
$for M in range(ROW_TILE):
vacc${M} = _mm256_min_ps(vacc${M}, vmax);
$for M in range(ROW_TILE):
__m128i vh${M} = _mm256_cvtps_ph(vacc${M}, _MM_FROUND_NO_EXC);
if (c & (4 * sizeof(uint16_t))) {
$for M in range(ROW_TILE):
_mm_storel_epi64((__m128i*) o${M}, vh${M});
$for M in range(ROW_TILE):
vh${M} = _mm_unpackhi_epi64(vh${M}, vh${M});
$for M in range(ROW_TILE):
o${M} += 4;
}
if (c & (2 * sizeof(uint16_t))) {
$for M in range(ROW_TILE):
_mm_storeu_si32(o${M}, vh${M});
$for M in range(ROW_TILE):
vh${M} = _mm_srli_epi64(vh${M}, 32);
$for M in range(ROW_TILE):
o${M} += 2;
}
if (c & (1 * sizeof(uint16_t))) {
$for M in range(ROW_TILE):
*o${M} = (uint16_t) _mm_extract_epi16(vh${M}, 0);
$for M in range(ROW_TILE):
o${M} += 1;
}
}
$for M in range(ROW_TILE):
i${M} = (const uint16_t*) ((uintptr_t) i${M} + input_increment);
o${M} = (uint16_t*) ((uintptr_t) o${M} + output_increment);
rows = doz(rows, ${ROW_TILE});
} while (rows != 0);
}