| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert CHANNEL_TILE % 4 == 0 |
| $assert HEIGHT_TILE == 2 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| $VMULADDQ_LANE_F32 = "vfmaq_lane_f32" if FMA else "vmlaq_lane_f32" |
| |
| #include <assert.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/conv.h> |
| #include <xnnpack/math.h> |
| |
| |
| void xnn_f32_conv_hwc_ukernel_3x3s2p0p1c3x${CHANNEL_TILE}__${"neonfma" if FMA else "neon"}_${HEIGHT_TILE}x1( |
| size_t input_height, |
| size_t input_width, |
| size_t output_y_start, |
| size_t output_y_end, |
| const float* input, |
| const float* zero, |
| const float* weights, |
| float* output, |
| size_t input_padding_top, |
| size_t output_channels, |
| size_t output_height_stride, |
| size_t output_width_stride, |
| const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(input_width != 0); |
| assert(output_y_end > output_y_start); |
| assert(input_padding_top <= 1); |
| assert(output_channels != 0); |
| |
| const size_t input_height_stride = input_width * 3 /* channels */ * sizeof(float); |
| const size_t input_width_decrement = (4 + ((input_width - 1) & 1) * 2 + (round_down_po2(input_width - 1, 2) * 3 /* channels */)) * sizeof(float); |
| const size_t output_width = input_width / 2; |
| const size_t output_channel_decrement = output_width * output_width_stride - ${CHANNEL_TILE} * sizeof(float); |
| const size_t output_height_increment = output_height_stride * 2 - round_up_po2(output_channels, ${CHANNEL_TILE}) * sizeof(float); |
| |
| // Adjustment for padding processed below |
| const float* i0 = (const float*) ((uintptr_t) input + |
| input_height_stride * (output_y_start * 2 /* vertical stride */ - input_padding_top)); |
| $for Y in range(HEIGHT_TILE + 3 - 1): |
| const float* i${Y+1} = (const float*) ((uintptr_t) i${Y} + input_height_stride); |
| float* o0 = (float*) ((uintptr_t) output + output_height_stride * output_y_start); |
| $for Y in range(HEIGHT_TILE - 1): |
| float* o${Y+1} = (float*) ((uintptr_t) o${Y} + output_height_stride); |
| |
| if XNN_UNPREDICTABLE(output_y_start < input_padding_top) { |
| i0 = zero; |
| } |
| |
| $if FMA: |
| const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min); |
| const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); |
| |
| for (size_t output_y = output_y_start; output_y < output_y_end; output_y += 2) { |
| const size_t input_y2 = output_y * 2 + 2 - input_padding_top; |
| const size_t input_y4 = input_y2 + 2; |
| if XNN_UNPREDICTABLE(input_y2 > input_height) { |
| i1 = zero; |
| } |
| if XNN_UNPREDICTABLE(input_y2 >= input_height) { |
| i2 = zero; |
| } |
| if XNN_UNPREDICTABLE(input_y4 > input_height) { |
| i3 = zero; |
| } |
| if XNN_UNPREDICTABLE(input_y4 >= input_height) { |
| i4 = zero; |
| } |
| if XNN_UNPREDICTABLE(output_y + 2 > output_y_end) { |
| o1 = o0; |
| } |
| |
| const float* w = weights; |
| size_t c = output_channels; |
| do { |
| // viMx0 = ( iM1c0, iM0c2, iM0c1, iM0c0 ) |
| $for Y in range(HEIGHT_TILE + 3): |
| float32x4_t vi${Y}x0 = vld1q_f32(i${Y}); i${Y} += 4; |
| |
| size_t iw = input_width - 1; |
| for (; iw >= 2; iw -= 2) { |
| float32x4_t vo0c${ABC[0:4]} = vld1q_f32(w); |
| $for C in range(4, CHANNEL_TILE, 4): |
| float32x4_t vo0c${ABC[C:C+4]} = vld1q_f32(w + ${C}); |
| $for Y in range(1, HEIGHT_TILE): |
| $for C in range(0, CHANNEL_TILE, 4): |
| float32x4_t vo${Y}c${ABC[C:C+4]} = vo0c${ABC[C:C+4]}; |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk00c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk00c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk10c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 2}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk10c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+1}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk20c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 3}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk20c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+2}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk00c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 4}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk00c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk10c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 5}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk10c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+1}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk20c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 6}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk20c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+2}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk00c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 7}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk00c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk10c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 8}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk10c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk20c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 9}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk20c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk01c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 10}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk01c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk11c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 11}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk11c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk21c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 12}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk21c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk01c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 13}); |
| |
| // viMx1 = ( iM2c0, iM1c2, iM1c1, iM1c0 ) |
| $for Y in range(HEIGHT_TILE + 3): |
| const float32x4_t vi${Y}x1 = vld1q_f32(i${Y}); i${Y} += 4; |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk01c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2}x1), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk11c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 14}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk11c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+1}x1), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk21c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 15}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk21c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+2}x1), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk01c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 16}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk01c2x${ABC[C:C+4]}, vget_low_f32(vi${Y*2}x1), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk11c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 17}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk11c2x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+1}x1), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk21c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 18}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk21c2x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+2}x1), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk02c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 19}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk02c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x1), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk12c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 20}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk12c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x1), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk22c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 21}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk22c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x1), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk02c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 22}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk02c1x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x1), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk12c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 23}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk12c1x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x1), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk22c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 24}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk22c1x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x1), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk02c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 25}); |
| |
| // viMx2 = ( iM2c2, iM2c1 ) |
| $for Y in range(HEIGHT_TILE + 3): |
| const float32x2_t vi${Y}x2 = vld1_f32(i${Y}); i${Y} += 2; |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk02c2x${ABC[C:C+4]}, vi${Y*2}x2, 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk12c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 26}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk12c2x${ABC[C:C+4]}, vi${Y*2+1}x2, 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk22c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 27}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk22c2x${ABC[C:C+4]}, vi${Y*2+2}x2, 0); |
| |
| $for Y in range(HEIGHT_TILE + 3): |
| vi${Y}x0 = vcombine_f32(vget_high_f32(vi${Y}x1), vi${Y}x2); |
| |
| $if not FMA: |
| const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min); |
| const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = vmaxq_f32(vo${Y}c${ABC[C:C+4]}, vmin); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = vminq_f32(vo${Y}c${ABC[C:C+4]}, vmax); |
| |
| if XNN_LIKELY(c >= ${CHANNEL_TILE}) { |
| $for Y in reversed(range(HEIGHT_TILE)): |
| vst1q_f32(o${Y}, vo${Y}c${ABC[0:4]}); |
| $for C in range(4, CHANNEL_TILE, 4): |
| vst1q_f32(o${Y} + 4, vo${Y}c${ABC[C:C+4]}); |
| o${Y} = (float*) ((uintptr_t) o${Y} + output_width_stride); |
| } else { |
| $for Y in range(HEIGHT_TILE): |
| float* o${Y}_tmp = o${Y}; |
| $for LOG2_CHANNEL_TILE in reversed(range(CHANNEL_TILE.bit_length())): |
| $if CHANNEL_TILE != 1 << LOG2_CHANNEL_TILE: |
| $if LOG2_CHANNEL_TILE == 1: |
| $for Y in range(HEIGHT_TILE): |
| float32x2_t vo${Y}c${ABC[0:2]} = vget_low_f32(vo${Y}c${ABC[0:4]}); |
| if (c & ${1 << LOG2_CHANNEL_TILE}) { |
| $if LOG2_CHANNEL_TILE >= 2: |
| $for C in range(0, 1 << (LOG2_CHANNEL_TILE - 1), 4): |
| $for Y in reversed(range(HEIGHT_TILE)): |
| vst1q_f32(o${Y}_tmp, vo${Y}c${ABC[C:C+4]}); o${Y}_tmp += 4; |
| vo${Y}c${ABC[C:C+4]} = vo${Y}c${ABC[C+(1<<LOG2_CHANNEL_TILE):C+(1<<LOG2_CHANNEL_TILE)+4]}; |
| $elif LOG2_CHANNEL_TILE == 1: |
| $for Y in reversed(range(HEIGHT_TILE)): |
| vst1_f32(o${Y}_tmp, vo${Y}c${ABC[0:2]}); o${Y}_tmp += 2; |
| vo${Y}c${ABC[0:2]} = vget_high_f32(vo${Y}c${ABC[0:4]}); |
| $elif LOG2_CHANNEL_TILE == 0: |
| $for Y in reversed(range(HEIGHT_TILE)): |
| vst1_lane_f32(o${Y}_tmp, vo${Y}c${ABC[0:2]}, 0); |
| } |
| |
| $for Y in range(HEIGHT_TILE): |
| o${Y} = (float*) ((uintptr_t) o${Y} + output_width_stride); |
| } |
| } |
| assert(iw < 2); |
| if XNN_LIKELY(iw & 1) { |
| float32x4_t vo0c${ABC[0:4]} = vld1q_f32(w); |
| $for C in range(4, CHANNEL_TILE, 4): |
| float32x4_t vo0c${ABC[C:C+4]} = vld1q_f32(w + ${C}); |
| $for Y in range(1, HEIGHT_TILE): |
| $for C in range(0, CHANNEL_TILE, 4): |
| float32x4_t vo${Y}c${ABC[C:C+4]} = vo0c${ABC[C:C+4]}; |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk00c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk00c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk10c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 2}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk10c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+1}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk20c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 3}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk20c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+2}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk00c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 4}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk00c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk10c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 5}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk10c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+1}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk20c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 6}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk20c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+2}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk00c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 7}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk00c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk10c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 8}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk10c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk20c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 9}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk20c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x0), 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk01c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 10}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk01c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk11c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 11}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk11c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk21c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 12}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk21c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x0), 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk01c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 13}); |
| |
| // viMx1 = ( iM1c2, iM1c1 ) |
| $for Y in range(HEIGHT_TILE + 3): |
| const float32x2_t vi${Y}x1 = vld1_f32(i${Y}); i${Y} += 2; |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk01c1x${ABC[C:C+4]}, vi${Y*2}x1, 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk11c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 14}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk11c1x${ABC[C:C+4]}, vi${Y*2+1}x1, 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk21c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 15}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk21c1x${ABC[C:C+4]}, vi${Y*2+2}x1, 0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk01c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 16}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk01c2x${ABC[C:C+4]}, vi${Y*2}x1, 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk11c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 17}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk11c2x${ABC[C:C+4]}, vi${Y*2+1}x1, 1); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk21c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 18}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk21c2x${ABC[C:C+4]}, vi${Y*2+2}x1, 1); |
| |
| $if not FMA: |
| const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min); |
| const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = vmaxq_f32(vo${Y}c${ABC[C:C+4]}, vmin); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $for Y in range(HEIGHT_TILE): |
| vo${Y}c${ABC[C:C+4]} = vminq_f32(vo${Y}c${ABC[C:C+4]}, vmax); |
| |
| if XNN_LIKELY(c >= ${CHANNEL_TILE}) { |
| $for Y in reversed(range(HEIGHT_TILE)): |
| vst1q_f32(o${Y}, vo${Y}c${ABC[0:4]}); |
| $for C in range(4, CHANNEL_TILE, 4): |
| vst1q_f32(o${Y} + 4, vo${Y}c${ABC[C:C+4]}); |
| o${Y} = (float*) ((uintptr_t) o${Y} + output_width_stride); |
| } else { |
| $for Y in range(HEIGHT_TILE): |
| float* o${Y}_tmp = o${Y}; |
| $for LOG2_CHANNEL_TILE in reversed(range(CHANNEL_TILE.bit_length())): |
| $if CHANNEL_TILE != 1 << LOG2_CHANNEL_TILE: |
| $if LOG2_CHANNEL_TILE == 1: |
| $for Y in range(HEIGHT_TILE): |
| float32x2_t vo${Y}c${ABC[0:2]} = vget_low_f32(vo${Y}c${ABC[0:4]}); |
| if (c & ${1 << LOG2_CHANNEL_TILE}) { |
| $if LOG2_CHANNEL_TILE >= 2: |
| $for C in range(0, 1 << (LOG2_CHANNEL_TILE - 1), 4): |
| $for Y in reversed(range(HEIGHT_TILE)): |
| vst1q_f32(o${Y}_tmp, vo${Y}c${ABC[C:C+4]}); o${Y}_tmp += 4; |
| vo${Y}c${ABC[C:C+4]} = vo${Y}c${ABC[C+(1<<LOG2_CHANNEL_TILE):C+(1<<LOG2_CHANNEL_TILE)+4]}; |
| $elif LOG2_CHANNEL_TILE == 1: |
| $for Y in reversed(range(HEIGHT_TILE)): |
| vst1_f32(o${Y}_tmp, vo${Y}c${ABC[0:2]}); o${Y}_tmp += 2; |
| vo${Y}c${ABC[0:2]} = vget_high_f32(vo${Y}c${ABC[0:4]}); |
| $elif LOG2_CHANNEL_TILE == 0: |
| $for Y in reversed(range(HEIGHT_TILE)): |
| vst1_lane_f32(o${Y}_tmp, vo${Y}c${ABC[0:2]}, 0); |
| } |
| $for Y in range(HEIGHT_TILE): |
| o${Y} = (float*) ((uintptr_t) o${Y} + output_width_stride); |
| } |
| } |
| // Move output pointers back to the position of the first pixel in a row, |
| // and forward to the next block of output channels |
| o0 = (float*) ((uintptr_t) o0 - output_channel_decrement); |
| o1 = (float*) ((uintptr_t) o1 - output_channel_decrement); |
| // Revert input pointers to the position of the first pixel in a row |
| i0 = (const float*) ((uintptr_t) i0 - input_width_decrement); |
| i1 = (const float*) ((uintptr_t) i1 - input_width_decrement); |
| i2 = (const float*) ((uintptr_t) i2 - input_width_decrement); |
| i3 = (const float*) ((uintptr_t) i3 - input_width_decrement); |
| i4 = (const float*) ((uintptr_t) i4 - input_width_decrement); |
| // Move to the block of weights for the next ${CHANNEL_TILE} output channels |
| w += ${CHANNEL_TILE * 28}; |
| c = doz(c, ${CHANNEL_TILE}); |
| } while (c != 0); |
| // Move output pointers back to the position of the first channel, and forward to the next block of rows |
| o0 = (float*) ((uintptr_t) o0 + output_height_increment); |
| o1 = (float*) ((uintptr_t) o1 + output_height_increment); |
| // Move input pointers forward to the next four rows |
| i0 = i4; |
| i1 = (const float*) ((uintptr_t) i0 + input_height_stride); |
| i2 = (const float*) ((uintptr_t) i1 + input_height_stride); |
| i3 = (const float*) ((uintptr_t) i2 + input_height_stride); |
| i4 = (const float*) ((uintptr_t) i3 + input_height_stride); |
| } |
| } |