blob: 9353c9c21db8144799b5f3b97997ca5eff2cf849 [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert CHANNEL_TILE % 4 == 0
$assert KERNEL_TILE >= 2
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/dwconv.h>
void xnn_f32_dwconv_minmax_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${"neonfma" if FMA else "neon"}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t channels,
size_t output_width,
const float** input,
const float* weights,
float* output,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const float* zero,
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
const float32x4_t vmax = vld1q_dup_f32(&params->scalar.max);
const float32x4_t vmin = vld1q_dup_f32(&params->scalar.min);
do {
$for K in range(KERNEL_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
input = (const float**) ((uintptr_t) input + input_stride);
size_t c = channels;
const float* w = weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 4):
float32x4_t vacc${ABC[C:C+4]}p0 = vld1q_f32(w); w += 4;
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 4):
const float32x4_t vi${K}x${ABC[C:C+4]} = vld1q_f32(i${K}); i${K} += 4;
$for C in range(0, CHANNEL_TILE, 4):
const float32x4_t vk${K}x${ABC[C:C+4]} = vld1q_f32(w); w += 4;
$for C in range(0, CHANNEL_TILE, 4):
$if 1 <= K < ACCUMULATORS:
float32x4_t vacc${ABC[C:C+4]}p${K} = vmulq_f32(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]});
$else:
vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = ${VMULADDQ_F32}(vacc${ABC[C:C+4]}p${K % ACCUMULATORS}, vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]}p${A} = vaddq_f32(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_STEP});
$ACC_STEP *= 2
$for C in range(0, CHANNEL_TILE, 4):
float32x4_t vacc${ABC[C:C+4]} = vmaxq_f32(vacc${ABC[C:C+4]}p0, vmin);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vminq_f32(vacc${ABC[C:C+4]}, vmax);
$for C in range(0, CHANNEL_TILE, 4):
vst1q_f32(output, vacc${ABC[C:C+4]}); output += 4;
}
$if CHANNEL_TILE > 4:
for (; c >= 4; c -= 4) {
float32x4_t vacc0123p0 = vld1q_f32(w); w += 4;
$for K in range(KERNEL_TILE):
const float32x4_t vi${K}x0123 = vld1q_f32(i${K}); i${K} += 4;
const float32x4_t vk${K}x0123 = vld1q_f32(w + ${(K + 1) * CHANNEL_TILE - 4});
$if 1 <= K < ACCUMULATORS:
float32x4_t vacc0123p${K} = vmulq_f32(vi${K}x0123, vk${K}x0123);
$else:
vacc0123p${K % ACCUMULATORS} = ${VMULADDQ_F32}(vacc0123p${K % ACCUMULATORS}, vi${K}x0123, vk${K}x0123);
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0123p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
vacc0123p${A} = vaddq_f32(vacc0123p${A}, vacc0123p${A + ACC_STEP});
$ACC_STEP *= 2
float32x4_t vacc0123 = vmaxq_f32(vacc0123p0, vmin);
vacc0123 = vminq_f32(vacc0123, vmax);
vst1q_f32(output, vacc0123); output += 4;
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE == 4:
float32x4_t vacc0123p0 = vld1q_f32(w); w += 4;
$else:
float32x4_t vacc0123p0 = vld1q_f32(w);
$for K in range(KERNEL_TILE):
const float32x4_t vi${K}x0123 = vld1q_f32(i${K});
$if CHANNEL_TILE == 4:
const float32x4_t vk${K}x0123 = vld1q_f32(w); w += 4;
$else:
const float32x4_t vk${K}x0123 = vld1q_f32(w + ${(K + 1) * CHANNEL_TILE});
$if 1 <= K < ACCUMULATORS:
float32x4_t vacc0123p${K} = vmulq_f32(vi${K}x0123, vk${K}x0123);
$else:
vacc0123p${K % ACCUMULATORS} = ${VMULADDQ_F32}(vacc0123p${K % ACCUMULATORS}, vi${K}x0123, vk${K}x0123);
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0123p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
vacc0123p${A} = vaddq_f32(vacc0123p${A}, vacc0123p${A + ACC_STEP});
$ACC_STEP *= 2
float32x4_t vacc0123 = vmaxq_f32(vacc0123p0, vmin);
vacc0123 = vminq_f32(vacc0123, vmax);
float32x2_t vacc01 = vget_low_f32(vacc0123);
if (c & 2) {
vst1_f32(output, vacc01); output += 2;
vacc01 = vget_high_f32(vacc0123);
}
if (c & 1) {
vst1_lane_f32(output, vacc01, 0); output += 1;
}
}
output = (float*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}