| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert CHANNEL_TILE % 4 == 0 |
| $assert KERNEL_TILE >= 2 |
| $assert ACCUMULATORS >= 1 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| $VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32" |
| #include <assert.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/dwconv.h> |
| |
| |
| void xnn_f32_dwconv_minmax_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${"neonfma" if FMA else "neon"}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( |
| size_t channels, |
| size_t output_width, |
| const float** input, |
| const float* weights, |
| float* output, |
| size_t input_stride, |
| size_t output_increment, |
| size_t input_offset, |
| const float* zero, |
| const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(channels != 0); |
| assert(output_width != 0); |
| |
| const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); |
| const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min); |
| do { |
| $for K in range(KERNEL_TILE): |
| const float* i${K} = input[${K}]; |
| assert(i${K} != NULL); |
| if XNN_UNPREDICTABLE(i${K} != zero) { |
| i${K} = (const float*) ((uintptr_t) i${K} + input_offset); |
| } |
| |
| input = (const float**) ((uintptr_t) input + input_stride); |
| |
| size_t c = channels; |
| const float* w = weights; |
| for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
| $for C in range(0, CHANNEL_TILE, 4): |
| float32x4_t vacc${ABC[C:C+4]}p0 = vld1q_f32(w); w += 4; |
| |
| $for K in range(KERNEL_TILE): |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vi${K}x${ABC[C:C+4]} = vld1q_f32(i${K}); i${K} += 4; |
| $for C in range(0, CHANNEL_TILE, 4): |
| const float32x4_t vk${K}x${ABC[C:C+4]} = vld1q_f32(w); w += 4; |
| $for C in range(0, CHANNEL_TILE, 4): |
| $if 1 <= K < ACCUMULATORS: |
| float32x4_t vacc${ABC[C:C+4]}p${K} = vmulq_f32(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); |
| $else: |
| vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = ${VMULADDQ_F32}(vacc${ABC[C:C+4]}p${K % ACCUMULATORS}, vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 |
| $ACC_STEP = 1 |
| $while ACC_STEP < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_STEP * 2): |
| $if A + ACC_STEP < ACCUMULATORS: |
| $for C in range(0, CHANNEL_TILE, 4): |
| vacc${ABC[C:C+4]}p${A} = vaddq_f32(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_STEP}); |
| $ACC_STEP *= 2 |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| float32x4_t vacc${ABC[C:C+4]} = vmaxq_f32(vacc${ABC[C:C+4]}p0, vmin); |
| $for C in range(0, CHANNEL_TILE, 4): |
| vacc${ABC[C:C+4]} = vminq_f32(vacc${ABC[C:C+4]}, vmax); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| vst1q_f32(output, vacc${ABC[C:C+4]}); output += 4; |
| } |
| $if CHANNEL_TILE > 4: |
| for (; c >= 4; c -= 4) { |
| float32x4_t vacc0123p0 = vld1q_f32(w); w += 4; |
| |
| $for K in range(KERNEL_TILE): |
| |
| const float32x4_t vi${K}x0123 = vld1q_f32(i${K}); i${K} += 4; |
| const float32x4_t vk${K}x0123 = vld1q_f32(w + ${(K + 1) * CHANNEL_TILE - 4}); |
| $if 1 <= K < ACCUMULATORS: |
| float32x4_t vacc0123p${K} = vmulq_f32(vi${K}x0123, vk${K}x0123); |
| $else: |
| vacc0123p${K % ACCUMULATORS} = ${VMULADDQ_F32}(vacc0123p${K % ACCUMULATORS}, vi${K}x0123, vk${K}x0123); |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc0123p0 |
| $ACC_STEP = 1 |
| $while ACC_STEP < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_STEP * 2): |
| $if A + ACC_STEP < ACCUMULATORS: |
| vacc0123p${A} = vaddq_f32(vacc0123p${A}, vacc0123p${A + ACC_STEP}); |
| $ACC_STEP *= 2 |
| |
| float32x4_t vacc0123 = vmaxq_f32(vacc0123p0, vmin); |
| vacc0123 = vminq_f32(vacc0123, vmax); |
| |
| vst1q_f32(output, vacc0123); output += 4; |
| } |
| if XNN_UNLIKELY(c != 0) { |
| $if CHANNEL_TILE == 4: |
| float32x4_t vacc0123p0 = vld1q_f32(w); w += 4; |
| $else: |
| float32x4_t vacc0123p0 = vld1q_f32(w); |
| |
| $for K in range(KERNEL_TILE): |
| |
| const float32x4_t vi${K}x0123 = vld1q_f32(i${K}); |
| $if CHANNEL_TILE == 4: |
| const float32x4_t vk${K}x0123 = vld1q_f32(w); w += 4; |
| $else: |
| const float32x4_t vk${K}x0123 = vld1q_f32(w + ${(K + 1) * CHANNEL_TILE}); |
| $if 1 <= K < ACCUMULATORS: |
| float32x4_t vacc0123p${K} = vmulq_f32(vi${K}x0123, vk${K}x0123); |
| $else: |
| vacc0123p${K % ACCUMULATORS} = ${VMULADDQ_F32}(vacc0123p${K % ACCUMULATORS}, vi${K}x0123, vk${K}x0123); |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc0123p0 |
| $ACC_STEP = 1 |
| $while ACC_STEP < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_STEP * 2): |
| $if A + ACC_STEP < ACCUMULATORS: |
| vacc0123p${A} = vaddq_f32(vacc0123p${A}, vacc0123p${A + ACC_STEP}); |
| $ACC_STEP *= 2 |
| |
| float32x4_t vacc0123 = vmaxq_f32(vacc0123p0, vmin); |
| vacc0123 = vminq_f32(vacc0123, vmax); |
| |
| float32x2_t vacc01 = vget_low_f32(vacc0123); |
| if (c & 2) { |
| vst1_f32(output, vacc01); output += 2; |
| vacc01 = vget_high_f32(vacc0123); |
| } |
| if (c & 1) { |
| vst1_lane_f32(output, vacc01, 0); output += 1; |
| } |
| } |
| |
| output = (float*) ((uintptr_t) output + output_increment); |
| } while (--output_width != 0); |
| } |