| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert CHANNEL_TILE % 4 == 0 |
| $assert KERNEL_TILE >= 2 |
| $assert ACCUMULATORS >= 1 |
| $assert ACTIVATION != "MINMAX" or ARCH in ["ARM", "X86", "RELAXED"] |
| $assert not FMA or ARCH == "RELAXED" |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| #include <wasm_simd128.h> |
| |
| #include <xnnpack/dwconv.h> |
| |
| |
| $assert ACTIVATION in ["LINEAR", "RELU", "MINMAX"] |
| $if ACTIVATION == "MINMAX": |
| $ WASM_F32X4_MIN={"ARM": "wasm_f32x4_min", "X86": "wasm_f32x4_pmin", "RELAXED": "__builtin_wasm_relaxed_min_f32x4"}[ARCH] |
| $ WASM_F32X4_MAX={"ARM": "wasm_f32x4_max", "X86": "wasm_f32x4_pmax", "RELAXED": "__builtin_wasm_relaxed_max_f32x4"}[ARCH] |
| $ACTIVATION_SUFFIX = {"LINEAR": ""}.get(ACTIVATION, "_" + ACTIVATION.lower()) |
| $ISA = "wasmsimd" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH != "RELAXED") else "wasmrelaxedsimd" |
| $ARCH_SUFFIX = "" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH == "RELAXED") else "_" + ("fma" if FMA else ARCH.lower()) |
| $PARAMS = {"LINEAR": "xnn_f32_default_params", "RELU": "xnn_f32_relu_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION] |
| void xnn_f32_dwconv${ACTIVATION_SUFFIX}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${ISA}${ARCH_SUFFIX}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( |
| size_t channels, |
| size_t output_width, |
| const float** input, |
| const float* weights, |
| float* output, |
| size_t input_stride, |
| size_t output_increment, |
| size_t input_offset, |
| const float* zero, |
| const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(channels != 0); |
| assert(output_width != 0); |
| |
| $if ACTIVATION == "MINMAX": |
| const v128_t vmin = wasm_v128_load64_splat(params->wasmsimd.min); |
| const v128_t vmax = wasm_v128_load64_splat(params->wasmsimd.max); |
| $elif ACTIVATION == "RELU": |
| const v128_t vzero = wasm_i32x4_const_splat(0); |
| do { |
| $for K in range(KERNEL_TILE): |
| const float* i${K} = input[${K}]; |
| assert(i${K} != NULL); |
| if XNN_UNPREDICTABLE(i${K} != zero) { |
| i${K} = (const float*) ((uintptr_t) i${K} + input_offset); |
| } |
| input = (const float**) ((uintptr_t) input + input_stride); |
| |
| size_t c = channels; |
| const float* w = weights; |
| for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
| v128_t vacc${ABC[0:4]}p0 = wasm_v128_load(w); |
| $for C in range(4, CHANNEL_TILE, 4): |
| v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(w + ${C}); |
| |
| $for K in range(KERNEL_TILE): |
| |
| const v128_t vi${K}x${ABC[0:4]} = wasm_v128_load(i${K}); |
| $for C in range(4, CHANNEL_TILE, 4): |
| const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K} + ${C}); |
| i${K} += ${CHANNEL_TILE}; |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w + ${(K + 1) * CHANNEL_TILE + C}); |
| $for C in range(0, CHANNEL_TILE, 4): |
| $if 1 <= K < ACCUMULATORS: |
| v128_t vacc${ABC[C:C+4]}p${K} = wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); |
| $else: |
| $if FMA: |
| vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = __builtin_wasm_fma_f32x4(vacc${ABC[C:C+4]}p${K % ACCUMULATORS}, vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); |
| $else: |
| vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_add(vacc${ABC[C:C+4]}p${K % ACCUMULATORS}, wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]})); |
| |
| w += ${(KERNEL_TILE + 1) * CHANNEL_TILE}; |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| $for C in range(0, CHANNEL_TILE, 4): |
| vacc${ABC[C:C+4]}p${A} = wasm_f32x4_add(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE}); |
| $ACC_SLICE *= 2 |
| |
| $if ACTIVATION == "MINMAX": |
| $for C in range(0, CHANNEL_TILE, 4): |
| v128_t vacc${ABC[C:C+4]} = ${WASM_F32X4_MAX}(vmin, vacc${ABC[C:C+4]}p0); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| vacc${ABC[C:C+4]} = ${WASM_F32X4_MIN}(vmax, vacc${ABC[C:C+4]}); |
| $elif ACTIVATION == "RELU": |
| $for C in range(0, CHANNEL_TILE, 4): |
| const v128_t vacc${ABC[C:C+4]} = wasm_i32x4_max(vacc${ABC[C:C+4]}p0, vzero); |
| $elif ACTIVATION == "LINEAR": |
| $for C in range(0, CHANNEL_TILE, 4): |
| const v128_t vacc${ABC[C:C+4]} = vacc${ABC[C:C+4]}p0; |
| |
| wasm_v128_store(output, vacc${ABC[0:4]}); |
| $for C in range(4, CHANNEL_TILE, 4): |
| wasm_v128_store(output + ${C}, vacc${ABC[C:C+4]}); |
| output += ${CHANNEL_TILE}; |
| } |
| $if CHANNEL_TILE > 4: |
| for (; c >= 4; c -= 4) { |
| v128_t vacc0123p0 = wasm_v128_load(w); |
| $for K in range(KERNEL_TILE): |
| |
| const v128_t vi${K}x0123 = wasm_v128_load(i${K}); |
| i${K} += 4; |
| |
| const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K + 1) * CHANNEL_TILE}); |
| $if 1 <= K < ACCUMULATORS: |
| v128_t vacc0123p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); |
| $else: |
| $if FMA: |
| vacc0123p${K % ACCUMULATORS} = __builtin_wasm_fma_f32x4(vacc0123p${K % ACCUMULATORS}, vi${K}x0123, vk${K}x0123); |
| $else: |
| vacc0123p${K % ACCUMULATORS} = wasm_f32x4_add(vacc0123p${K % ACCUMULATORS}, wasm_f32x4_mul(vi${K}x0123, vk${K}x0123)); |
| |
| w += 4; |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| vacc0123p${A} = wasm_f32x4_add(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); |
| $ACC_SLICE *= 2 |
| |
| $if ACTIVATION == "MINMAX": |
| v128_t vacc0123 = ${WASM_F32X4_MAX}(vmin, vacc0123p0); |
| vacc0123 = ${WASM_F32X4_MIN}(vmax, vacc0123); |
| $elif ACTIVATION == "RELU": |
| const v128_t vacc0123 = wasm_i32x4_max(vacc0123p0, vzero); |
| $elif ACTIVATION == "LINEAR": |
| const v128_t vacc0123 = vacc0123p0; |
| |
| wasm_v128_store(output, vacc0123); |
| output += 4; |
| } |
| if XNN_UNLIKELY(c != 0) { |
| v128_t vacc0123p0 = wasm_v128_load(w); |
| $for K in range(KERNEL_TILE): |
| |
| const v128_t vi${K}x0123 = wasm_v128_load(i${K}); |
| const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K+1) * CHANNEL_TILE}); |
| $if 1 <= K < ACCUMULATORS: |
| v128_t vacc0123p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); |
| $else: |
| $if FMA: |
| vacc0123p${K % ACCUMULATORS} = __builtin_wasm_fma_f32x4(vacc0123p${K % ACCUMULATORS}, vi${K}x0123, vk${K}x0123); |
| $else: |
| vacc0123p${K % ACCUMULATORS} = wasm_f32x4_add(vacc0123p${K % ACCUMULATORS}, wasm_f32x4_mul(vi${K}x0123, vk${K}x0123)); |
| |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| vacc0123p${A} = wasm_f32x4_add(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); |
| $ACC_SLICE *= 2 |
| |
| $if ACTIVATION == "MINMAX": |
| v128_t vacc0123 = ${WASM_F32X4_MAX}(vmin, vacc0123p0); |
| vacc0123 = ${WASM_F32X4_MIN}(vmax, vacc0123); |
| $elif ACTIVATION == "RELU": |
| v128_t vacc0123 = wasm_i32x4_max(vacc0123p0, vzero); |
| $elif ACTIVATION == "LINEAR": |
| v128_t vacc0123 = vacc0123p0; |
| |
| if (c & 2) { |
| *((double*) output) = wasm_f64x2_extract_lane(vacc0123, 0); |
| vacc0123 = wasm_v32x4_shuffle(vacc0123, vacc0123, 2, 3, 2, 3); |
| output += 2; |
| } |
| if (c & 1) { |
| *output = wasm_f32x4_extract_lane(vacc0123, 0); |
| output += 1; |
| } |
| } |
| |
| output = (float*) ((uintptr_t) output + output_increment); |
| } while (--output_width != 0); |
| } |