| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert ROW_TILE >= 1 |
| $assert ACCUMULATORS >= 1 |
| #include <assert.h> |
| |
| #include <xnnpack/dwconv.h> |
| #include <xnnpack/math.h> |
| |
| |
| void xnn_f32_dwconv2d_chw_ukernel_3x3s2p1__scalar_${ROW_TILE}x1${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}( |
| size_t input_height, |
| size_t input_width, |
| const float* input, |
| const float* weights, |
| const float* zero, |
| float* output, |
| uint32_t padding_top, |
| const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)]) |
| { |
| assert(input_height != 0); |
| assert(input_width != 0); |
| assert(input_width % sizeof(float) == 0); |
| assert(padding_top >= 0); |
| assert(padding_top <= 1); |
| |
| const float vmin = params->scalar.min; |
| const float vmax = params->scalar.max; |
| |
| const float vbias = weights[0]; |
| const float vk00 = weights[1]; |
| const float vk01 = weights[2]; |
| const float vk02 = weights[3]; |
| const float vk10 = weights[4]; |
| const float vk11 = weights[5]; |
| const float vk12 = weights[6]; |
| const float vk20 = weights[7]; |
| const float vk21 = weights[8]; |
| const float vk22 = weights[9]; |
| |
| $if ROW_TILE > 1: |
| const size_t output_width = round_down_po2((input_width + (2 /* padding */ - 3 /* kernel size */ + 2 /* subsampling */) * sizeof(float)) / 2, sizeof(float)); |
| |
| const float* i0 = (const float*) ((uintptr_t) input - ((-padding_top) & input_width)); |
| const float* i1 = (const float*) ((uintptr_t) i0 + input_width); |
| if XNN_UNPREDICTABLE(padding_top != 0) { |
| i0 = zero; |
| } |
| $for M in range(2, 1 + 2 * ROW_TILE): |
| const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); |
| |
| float* o0 = output; |
| $for M in range(1, ROW_TILE): |
| float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width); |
| |
| size_t padded_input_height = input_height + padding_top + 1 /* padding bottom */; |
| size_t output_height = (padded_input_height - 3 /* kernel size */ + 2 /* subsampling */) / 2; |
| do { |
| $for M in range(2, 1 + 2 * ROW_TILE): |
| if XNN_UNPREDICTABLE(padded_input_height < ${2 + M}) { |
| i${M} = zero; |
| $if M % 2 == 1: |
| o${(M - 1) // 2} = o${(M - 1) // 2 - 1}; |
| } |
| |
| $for M in range(1 + 2 * ROW_TILE): |
| float vi${M}x0 = 0.0f; |
| |
| size_t w = input_width; |
| for (; w >= 2 * sizeof(float); w -= 2 * sizeof(float)) { |
| $for M in range(1 + 2 * ROW_TILE): |
| const float vi${M}x1 = i${M}[0]; |
| |
| $for K in range(3): |
| $for M in range(ROW_TILE): |
| $if K == 0: |
| float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0; |
| $elif K < ACCUMULATORS: |
| float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0; |
| $else: |
| vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0; |
| |
| $for M in range(1 + 2 * ROW_TILE): |
| const float vi${M}x2 = i${M}[1]; |
| i${M} += 2; |
| |
| $for K in range(3): |
| $for M in range(ROW_TILE): |
| $if K + 3 < ACCUMULATORS: |
| float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1; |
| $else: |
| vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1; |
| |
| $for M in range(1 + 2 * ROW_TILE): |
| vi${M}x0 = vi${M}x2; |
| |
| $for K in range(3): |
| $for M in range(ROW_TILE): |
| vo${M}p${(K+6) % ACCUMULATORS} += vi${2*M+K}x2 * vk${K}2; |
| |
| $if ACCUMULATORS > 1: |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| $for M in range(ROW_TILE): |
| vo${M}p${A} += vo${M}p${A + ACC_SLICE}; |
| $ACC_SLICE *= 2 |
| |
| $for M in range(ROW_TILE): |
| float vo${M} = math_max_f32(vo${M}p0, vmin); |
| |
| $for M in range(ROW_TILE): |
| vo${M} = math_min_f32(vo${M}, vmax); |
| |
| $for M in reversed(range(ROW_TILE)): |
| *o${M}++ = vo${M}; |
| } |
| // Potentially process the last pixel. |
| assert(w <= 1 * sizeof(float)); |
| if (w != 0) { |
| $for M in range(1 + 2 * ROW_TILE): |
| const float vi${M}x1 = *i${M}++; |
| |
| $for K in range(3): |
| $for M in range(ROW_TILE): |
| $if K == 0: |
| float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0; |
| $elif K < ACCUMULATORS: |
| float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0; |
| $else: |
| vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0; |
| |
| $for K in range(3): |
| $for M in range(ROW_TILE): |
| $if K + 3 < ACCUMULATORS: |
| float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1; |
| $else: |
| vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1; |
| |
| $if ACCUMULATORS > 1: |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| $for M in range(ROW_TILE): |
| vo${M}p${A} += vo${M}p${A + ACC_SLICE}; |
| $ACC_SLICE *= 2 |
| |
| $for M in range(ROW_TILE): |
| float vo${M} = math_max_f32(vo${M}p0, vmin); |
| |
| $for M in range(ROW_TILE): |
| vo${M} = math_min_f32(vo${M}, vmax); |
| |
| $for M in reversed(range(ROW_TILE)): |
| *o${M}++ = vo${M}; |
| } |
| |
| i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE - 1}); |
| i1 = (const float*) ((uintptr_t) i${2 * ROW_TILE}); |
| $for M in range(2, 1 + 2 * ROW_TILE): |
| i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); |
| |
| $if ROW_TILE > 1: |
| o0 = o${ROW_TILE - 1}; |
| $for M in range(1, ROW_TILE): |
| o${M} = (float*) ((uintptr_t) o${M-1} + output_width); |
| |
| $if ROW_TILE > 1: |
| output_height = doz(output_height, ${ROW_TILE}); |
| padded_input_height = doz(padded_input_height, ${ROW_TILE * 2}); |
| $else: |
| output_height -= 1; |
| padded_input_height -= 2; |
| } while (output_height != 0); |
| } |