blob: 60c465be5529d06daa03a2e77913b6842a9d2f16 [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ROW_TILE >= 1
$assert ACCUMULATORS >= 1
#include <assert.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/math.h>
void xnn_f32_dwconv2d_chw_ukernel_3x3s2p1__scalar_${ROW_TILE}x1${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}(
size_t input_height,
size_t input_width,
const float* input,
const float* weights,
const float* zero,
float* output,
uint32_t padding_top,
const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(input_height != 0);
assert(input_width != 0);
assert(input_width % sizeof(float) == 0);
assert(padding_top >= 0);
assert(padding_top <= 1);
const float vmin = params->scalar.min;
const float vmax = params->scalar.max;
const float vbias = weights[0];
const float vk00 = weights[1];
const float vk01 = weights[2];
const float vk02 = weights[3];
const float vk10 = weights[4];
const float vk11 = weights[5];
const float vk12 = weights[6];
const float vk20 = weights[7];
const float vk21 = weights[8];
const float vk22 = weights[9];
$if ROW_TILE > 1:
const size_t output_width = round_down_po2((input_width + (2 /* padding */ - 3 /* kernel size */ + 2 /* subsampling */) * sizeof(float)) / 2, sizeof(float));
const float* i0 = (const float*) ((uintptr_t) input - ((-padding_top) & input_width));
const float* i1 = (const float*) ((uintptr_t) i0 + input_width);
if XNN_UNPREDICTABLE(padding_top != 0) {
i0 = zero;
}
$for M in range(2, 1 + 2 * ROW_TILE):
const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);
float* o0 = output;
$for M in range(1, ROW_TILE):
float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width);
size_t padded_input_height = input_height + padding_top + 1 /* padding bottom */;
size_t output_height = (padded_input_height - 3 /* kernel size */ + 2 /* subsampling */) / 2;
do {
$for M in range(2, 1 + 2 * ROW_TILE):
if XNN_UNPREDICTABLE(padded_input_height < ${2 + M}) {
i${M} = zero;
$if M % 2 == 1:
o${(M - 1) // 2} = o${(M - 1) // 2 - 1};
}
$for M in range(1 + 2 * ROW_TILE):
float vi${M}x0 = 0.0f;
size_t w = input_width;
for (; w >= 2 * sizeof(float); w -= 2 * sizeof(float)) {
$for M in range(1 + 2 * ROW_TILE):
const float vi${M}x1 = i${M}[0];
$for K in range(3):
$for M in range(ROW_TILE):
$if K == 0:
float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0;
$elif K < ACCUMULATORS:
float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0;
$else:
vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0;
$for M in range(1 + 2 * ROW_TILE):
const float vi${M}x2 = i${M}[1];
i${M} += 2;
$for K in range(3):
$for M in range(ROW_TILE):
$if K + 3 < ACCUMULATORS:
float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1;
$else:
vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1;
$for M in range(1 + 2 * ROW_TILE):
vi${M}x0 = vi${M}x2;
$for K in range(3):
$for M in range(ROW_TILE):
vo${M}p${(K+6) % ACCUMULATORS} += vi${2*M+K}x2 * vk${K}2;
$if ACCUMULATORS > 1:
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for M in range(ROW_TILE):
vo${M}p${A} += vo${M}p${A + ACC_SLICE};
$ACC_SLICE *= 2
$for M in range(ROW_TILE):
float vo${M} = math_max_f32(vo${M}p0, vmin);
$for M in range(ROW_TILE):
vo${M} = math_min_f32(vo${M}, vmax);
$for M in reversed(range(ROW_TILE)):
*o${M}++ = vo${M};
}
// Potentially process the last pixel.
assert(w <= 1 * sizeof(float));
if (w != 0) {
$for M in range(1 + 2 * ROW_TILE):
const float vi${M}x1 = *i${M}++;
$for K in range(3):
$for M in range(ROW_TILE):
$if K == 0:
float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0;
$elif K < ACCUMULATORS:
float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0;
$else:
vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0;
$for K in range(3):
$for M in range(ROW_TILE):
$if K + 3 < ACCUMULATORS:
float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1;
$else:
vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1;
$if ACCUMULATORS > 1:
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for M in range(ROW_TILE):
vo${M}p${A} += vo${M}p${A + ACC_SLICE};
$ACC_SLICE *= 2
$for M in range(ROW_TILE):
float vo${M} = math_max_f32(vo${M}p0, vmin);
$for M in range(ROW_TILE):
vo${M} = math_min_f32(vo${M}, vmax);
$for M in reversed(range(ROW_TILE)):
*o${M}++ = vo${M};
}
i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE - 1});
i1 = (const float*) ((uintptr_t) i${2 * ROW_TILE});
$for M in range(2, 1 + 2 * ROW_TILE):
i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);
$if ROW_TILE > 1:
o0 = o${ROW_TILE - 1};
$for M in range(1, ROW_TILE):
o${M} = (float*) ((uintptr_t) o${M-1} + output_width);
$if ROW_TILE > 1:
output_height = doz(output_height, ${ROW_TILE});
padded_input_height = doz(padded_input_height, ${ROW_TILE * 2});
$else:
output_height -= 1;
padded_input_height -= 2;
} while (output_height != 0);
}