| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert ROW_TILE >= 1 |
| $assert ACCUMULATORS >= 1 |
| #include <assert.h> |
| |
| #include <xmmintrin.h> |
| |
| #include <xnnpack/dwconv.h> |
| #include <xnnpack/math.h> |
| |
| |
| void xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__sse_${ROW_TILE}x4${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}( |
| size_t input_height, |
| size_t input_width, |
| const float* input, |
| const float* weights, |
| const float* zero, |
| float* output, |
| uint32_t padding_top, |
| const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(input_height != 0); |
| assert(input_width != 0); |
| assert(input_width % sizeof(float) == 0); |
| assert(padding_top >= 1); |
| assert(padding_top <= 2); |
| |
| const __m128 vmask_even = _mm_load_ps((const float*) params->sse.mask_even); |
| const __m128 vmask_odd = _mm_load_ps((const float*) params->sse.mask_odd); |
| const __m128 vmax = _mm_load_ps(params->sse.max); |
| const __m128 vmin = _mm_load_ps(params->sse.min); |
| |
| const __m128 vbias = _mm_load1_ps(weights); |
| $for R in range(5): |
| $for S in range(5): |
| const __m128 vk${R}${S} = _mm_load1_ps(weights + ${R*5+S+1}); |
| |
| const uint32_t padding_top_less_1 = padding_top - 1; |
| const size_t input_decrement = round_up_po2(input_width, 8 * sizeof(float)); |
| |
| const float* i0 = zero; |
| const float* i1 = (const float*) ((uintptr_t) input - ((-padding_top_less_1) & input_width)); |
| const float* i2 = (const float*) ((uintptr_t) i1 + input_width); |
| if XNN_UNPREDICTABLE(padding_top_less_1 != 0) { |
| i1 = zero; |
| } |
| $for M in range(3, 3 + 2 * ROW_TILE): |
| const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); |
| |
| $if ROW_TILE > 1: |
| const size_t output_width = round_down_po2((input_width + (2 /* padding */ - 3 /* kernel size */ + 2 /* subsampling */) * sizeof(float)) / 2, sizeof(float)); |
| |
| float* o0 = output; |
| $for M in range(1, ROW_TILE): |
| float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width); |
| |
| size_t padded_input_height = input_height + (padding_top_less_1 + 1) + 2 /* padding bottom */; |
| size_t output_height = (padded_input_height - 5 /* kernel size */ + 2 /* subsampling */) / 2; |
| do { |
| $for M in range(3, 3 + 2 * ROW_TILE): |
| if XNN_UNPREDICTABLE(padded_input_height < ${3 + M}) { |
| i${M} = zero; |
| $if M % 2 == 0 and M <= 2 * ROW_TILE + 1: |
| o${M // 2 - 1} = o${M // 2 - 2}; |
| } |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| __m128 vi${M}x6024 = _mm_setzero_ps(); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| __m128 vi${M}x7135 = _mm_setzero_ps(); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}x89AB = _mm_loadu_ps(i${M}); |
| const __m128 vi${M}xCDEF = _mm_loadu_ps(i${M} + 4); |
| i${M} += 8; |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| __m128 vi${M}x8ACE = _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(2, 0, 2, 0)); |
| __m128 vi${M}x9BDF = _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| size_t w = input_width; |
| for (; w > 8 * sizeof(float); w -= 8 * sizeof(float)) { |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| $if K == 0: |
| __m128 vo${M}p0 = _mm_add_ps(vbias, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2)); |
| $elif K < ACCUMULATORS: |
| __m128 vo${M}p${K} = _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2); |
| $else: |
| vo${M}p${K % ACCUMULATORS} = _mm_add_ps(vo${M}p${K % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2)); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xE8AC = _mm_shuffle_ps(vi${M}x8ACE, vi${M}x8ACE, _MM_SHUFFLE(2, 1, 0, 3)); |
| |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| vo${M}p${(K+5) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+5) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}3)); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}x68AC = _mm_move_ss(vi${M}xE8AC, vi${M}x6024); |
| vi${M}x6024 = vi${M}xE8AC; |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xF9BD = _mm_shuffle_ps(vi${M}x9BDF, vi${M}x9BDF, _MM_SHUFFLE(2, 1, 0, 3)); |
| |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| vo${M}p${(K+10) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+10) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x68AC, vk${K}0)); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xGHIJ = _mm_loadu_ps(i${M}); |
| const __m128 vi${M}xKLMN = _mm_loadu_ps(i${M} + 4); |
| i${M} += 8; |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}x79BD = _mm_move_ss(vi${M}xF9BD, vi${M}x7135); |
| vi${M}x7135 = vi${M}xF9BD; |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xGIKM = _mm_shuffle_ps(vi${M}xGHIJ, vi${M}xKLMN, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 vi${M}xHJLN = _mm_shuffle_ps(vi${M}xGHIJ, vi${M}xKLMN, _MM_SHUFFLE(3, 1, 3, 1)); |
| vi${M}x9BDF = vi${M}xHJLN; |
| |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| vo${M}p${(K+15) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+15) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x79BD, vk${K}1)); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xGACE = _mm_move_ss(vi${M}x8ACE, vi${M}xGIKM); |
| vi${M}x8ACE = vi${M}xGIKM; |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xACEG = _mm_shuffle_ps(vi${M}xGACE, vi${M}xGACE, _MM_SHUFFLE(0, 3, 2, 1)); |
| |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| vo${M}p${(K+20) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+20) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}xACEG, vk${K}4)); |
| |
| $if ACCUMULATORS > 1: |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| $for M in range(ROW_TILE): |
| vo${M}p${A} = _mm_add_ps(vo${M}p${A}, vo${M}p${A + ACC_SLICE}); |
| $ACC_SLICE *= 2 |
| |
| $for M in range(ROW_TILE): |
| __m128 vo${M} = _mm_max_ps(vo${M}p0, vmin); |
| |
| $for M in range(ROW_TILE): |
| vo${M} = _mm_min_ps(vo${M}, vmax); |
| |
| $for M in reversed(range(ROW_TILE)): |
| _mm_storeu_ps(o${M}, vo${M}); |
| o${M} += 4; |
| } |
| // Last block has 1-8 pixels to process. |
| assert(w <= 8 * sizeof(float)); |
| assert(w >= 1 * sizeof(float)); |
| { |
| $for M in range(3 + 2 * ROW_TILE): |
| vi${M}x8ACE = _mm_and_ps(vi${M}x8ACE, vmask_even); |
| vi${M}x9BDF = _mm_and_ps(vi${M}x9BDF, vmask_odd); |
| |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| $if K == 0: |
| __m128 vo${M}p0 = _mm_add_ps(vbias, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2)); |
| $elif K < ACCUMULATORS: |
| __m128 vo${M}p${K} = _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2); |
| $else: |
| vo${M}p${K % ACCUMULATORS} = _mm_add_ps(vo${M}p${K % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2)); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xE8AC = _mm_shuffle_ps(vi${M}x8ACE, vi${M}x8ACE, _MM_SHUFFLE(2, 1, 0, 3)); |
| |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| vo${M}p${(K+5) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+5) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}3)); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}x68AC = _mm_move_ss(vi${M}xE8AC, vi${M}x6024); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xF9BD = _mm_shuffle_ps(vi${M}x9BDF, vi${M}x9BDF, _MM_SHUFFLE(2, 1, 0, 3)); |
| |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| vo${M}p${(K+10) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+10) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x68AC, vk${K}0)); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}x79BD = _mm_move_ss(vi${M}xF9BD, vi${M}x7135); |
| |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| vo${M}p${(K+15) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+15) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x79BD, vk${K}1)); |
| |
| const __m128 vzero = _mm_setzero_ps(); |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xGACE = _mm_move_ss(vi${M}x8ACE, vzero); |
| |
| $for M in range(3 + 2 * ROW_TILE): |
| const __m128 vi${M}xACEG = _mm_shuffle_ps(vi${M}xGACE, vi${M}xGACE, _MM_SHUFFLE(0, 3, 2, 1)); |
| |
| $for K in range(5): |
| $for M in range(ROW_TILE): |
| vo${M}p${(K+20) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+20) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}xACEG, vk${K}4)); |
| |
| $if ACCUMULATORS > 1: |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| $for M in range(ROW_TILE): |
| vo${M}p${A} = _mm_add_ps(vo${M}p${A}, vo${M}p${A + ACC_SLICE}); |
| $ACC_SLICE *= 2 |
| |
| $for M in range(ROW_TILE): |
| __m128 vo${M} = _mm_max_ps(vo${M}p0, vmin); |
| |
| $for M in range(ROW_TILE): |
| vo${M} = _mm_min_ps(vo${M}, vmax); |
| |
| size_t w_tmp = (w + 1 * sizeof(float)) / (2 * sizeof(float)); |
| if XNN_LIKELY(w_tmp >= 4) { |
| $for M in reversed(range(ROW_TILE)): |
| _mm_storeu_ps(o${M}, vo${M}); |
| o${M} += 4; |
| } else { |
| if (w_tmp & 2) { |
| $for M in reversed(range(ROW_TILE)): |
| _mm_storel_pi((__m64*) o${M}, vo${M}); |
| o${M} += 2; |
| |
| $for M in range(ROW_TILE): |
| vo${M} = _mm_movehl_ps(vo${M}, vo${M}); |
| } |
| if (w_tmp & 1) { |
| $for M in reversed(range(ROW_TILE)): |
| _mm_store_ss(o${M}, vo${M}); |
| o${M} += 1; |
| } |
| } |
| } |
| |
| i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE} - input_decrement); |
| i1 = (const float*) ((uintptr_t) i${2 * ROW_TILE + 1} - input_decrement); |
| i2 = (const float*) ((uintptr_t) i${2 * ROW_TILE + 2} - input_decrement); |
| $for M in range(3, 3 + 2 * ROW_TILE): |
| i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); |
| |
| $if ROW_TILE > 1: |
| o0 = o${ROW_TILE - 1}; |
| $for M in range(1, ROW_TILE): |
| o${M} = (float*) ((uintptr_t) o${M-1} + output_width); |
| |
| $if ROW_TILE > 1: |
| output_height = doz(output_height, ${ROW_TILE}); |
| padded_input_height = doz(padded_input_height, ${ROW_TILE * 2}); |
| $else: |
| output_height -= 1; |
| padded_input_height -= 2; |
| } while (output_height != 0); |
| } |