| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert PIXEL_TILE >= 1 |
| $assert PIXEL_TILE % 4 == 0 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| $VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32" |
| $VMULADD_F32 = "vfma_f32" if FMA else "vmla_f32" |
| #include <assert.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/ibilinear.h> |
| |
| |
| void xnn_f32_ibilinear_chw_ukernel__${"neonfma" if FMA else "neon"}_p${PIXEL_TILE}( |
| size_t output_pixels, |
| size_t channels, |
| const float**restrict input, |
| size_t input_offset, |
| const float*restrict weights, |
| float*restrict output, |
| size_t input_increment) XNN_OOB_READS |
| { |
| assert(output_pixels != 0); |
| assert(channels != 0); |
| assert(input_increment % sizeof(float) == 0); |
| |
| do { |
| const float** i = input; |
| const float* w = weights; |
| size_t p = output_pixels; |
| $if PIXEL_TILE > 4: |
| for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) { |
| $for P in range(PIXEL_TILE): |
| const float* itl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); |
| const float* ibl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
| i += 2 * ${PIXEL_TILE}; |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const float32x4x2_t vw${ABC[P:P+4]} = vld2q_f32(w + ${2 * P}); |
| w += 2 * ${PIXEL_TILE}; |
| |
| $for P in range(0, PIXEL_TILE): |
| const float32x2_t vtltr${ABC[P]} = vld1_f32(itl${ABC[P]}); |
| const float32x2_t vblbr${ABC[P]} = vld1_f32(ibl${ABC[P]}); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const float32x4_t valphah${ABC[P:P+4]} = vw${ABC[P:P+4]}.val[0]; |
| const float32x4_t valphav${ABC[P:P+4]} = vw${ABC[P:P+4]}.val[1]; |
| |
| $for P in range(0, PIXEL_TILE, 2): |
| const float32x4_t vtltr${ABC[P:P+2]} = vcombine_f32(vtltr${ABC[P]}, vtltr${ABC[P+1]}); |
| const float32x4_t vblbr${ABC[P:P+2]} = vcombine_f32(vblbr${ABC[P]}, vblbr${ABC[P+1]}); |
| |
| $for P in range(0, PIXEL_TILE, 2): |
| const float32x4_t vldrd${ABC[P:P+2]} = vsubq_f32(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]}); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const float32x4x2_t vld_t${ABC[P:P+4]} = vuzpq_f32(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}); |
| const float32x4_t vld${ABC[P:P+4]} = vld_t${ABC[P:P+4]}.val[0]; |
| const float32x4_t vrd${ABC[P:P+4]} = vld_t${ABC[P:P+4]}.val[1]; |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const float32x4x2_t vtl_t${ABC[P:P+4]} = vuzpq_f32(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}); |
| const float32x4_t vtl${ABC[P:P+4]} = vtl_t${ABC[P:P+4]}.val[0]; |
| const float32x4_t vtr${ABC[P:P+4]} = vtl_t${ABC[P:P+4]}.val[1]; |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const float32x4_t vl${ABC[P:P+4]} = ${VMULADDQ_F32}(vtl${ABC[P:P+4]}, vld${ABC[P:P+4]}, valphav${ABC[P:P+4]}); |
| const float32x4_t vr${ABC[P:P+4]} = ${VMULADDQ_F32}(vtr${ABC[P:P+4]}, vrd${ABC[P:P+4]}, valphav${ABC[P:P+4]}); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const float32x4_t vd${ABC[P:P+4]} = vsubq_f32(vr${ABC[P:P+4]}, vl${ABC[P:P+4]}); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const float32x4_t vo${ABC[P:P+4]} = ${VMULADDQ_F32}(vl${ABC[P:P+4]}, vd${ABC[P:P+4]}, valphah${ABC[P:P+4]}); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| vst1q_f32(output + ${P}, vo${ABC[P:P+4]}); |
| output += ${PIXEL_TILE}; |
| } |
| |
| for (; p >= 4; p -= 4) { |
| $for P in range(4): |
| const float* itl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); |
| const float* ibl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
| i += 8; |
| |
| const float32x4x2_t vw = vld2q_f32(w); |
| w += 8; |
| |
| $for P in range(0, 4): |
| const float32x2_t vtltr${ABC[P]} = vld1_f32(itl${ABC[P]}); |
| const float32x2_t vblbr${ABC[P]} = vld1_f32(ibl${ABC[P]}); |
| |
| const float32x4_t valphah = vw.val[0]; |
| const float32x4_t valphav = vw.val[1]; |
| |
| $for P in range(0, 4, 2): |
| const float32x4_t vtltr${ABC[P:P+2]} = vcombine_f32(vtltr${ABC[P]}, vtltr${ABC[P+1]}); |
| const float32x4_t vblbr${ABC[P:P+2]} = vcombine_f32(vblbr${ABC[P]}, vblbr${ABC[P+1]}); |
| |
| $for P in range(0, 4, 2): |
| const float32x4_t vldrd${ABC[P:P+2]} = vsubq_f32(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]}); |
| |
| const float32x4x2_t vld_t = vuzpq_f32(vldrd01, vldrd23); |
| const float32x4_t vld = vld_t.val[0]; |
| const float32x4_t vrd = vld_t.val[1]; |
| |
| const float32x4x2_t vtl_t = vuzpq_f32(vtltr01, vtltr23); |
| const float32x4_t vtl = vtl_t.val[0]; |
| const float32x4_t vtr = vtl_t.val[1]; |
| |
| const float32x4_t vl = ${VMULADDQ_F32}(vtl, vld, valphav); |
| const float32x4_t vr = ${VMULADDQ_F32}(vtr, vrd, valphav); |
| |
| const float32x4_t vd = vsubq_f32(vr, vl); |
| const float32x4_t vo = ${VMULADDQ_F32}(vl, vd, valphah); |
| |
| vst1q_f32(output, vo); |
| output += 4; |
| } |
| |
| if XNN_UNLIKELY(p != 0) { |
| if (p & 2) { |
| const float32x2x2_t vw = vld2_f32(w); |
| w += 4; |
| |
| const float32x2_t valphah = vw.val[0]; |
| const float32x2_t valphav = vw.val[1]; |
| |
| $for P in range(2): |
| const float* itl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); |
| const float* ibl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
| i += 4; |
| |
| $for P in range(0, 2): |
| const float32x2_t vtltr${ABC[P]} = vld1_f32(itl${ABC[P]}); |
| const float32x2_t vblbr${ABC[P]} = vld1_f32(ibl${ABC[P]}); |
| |
| $for P in range(0, 2): |
| const float32x2_t vldrd${ABC[P]} = vsub_f32(vblbr${ABC[P]}, vtltr${ABC[P]}); |
| |
| const float32x2x2_t vld_t = vuzp_f32(vldrd0, vldrd1); |
| const float32x2_t vld = vld_t.val[0]; |
| const float32x2_t vrd = vld_t.val[1]; |
| |
| const float32x2x2_t vtl_t = vuzp_f32(vtltr0, vtltr1); |
| const float32x2_t vtl = vtl_t.val[0]; |
| const float32x2_t vtr = vtl_t.val[1]; |
| |
| const float32x2_t vl = ${VMULADD_F32}(vtl, vld, valphav); |
| const float32x2_t vr = ${VMULADD_F32}(vtr, vrd, valphav); |
| |
| const float32x2_t vd = vsub_f32(vr, vl); |
| const float32x2_t vo = ${VMULADD_F32}(vl, vd, valphah); |
| |
| vst1_f32(output, vo); |
| output += 2; |
| } |
| |
| if (p & 1) { |
| // We are computing the following formula: |
| // result = (1 - alpha_h) * (1 - alpha_v) * top_left + |
| // alpha_h * (1 - alpha_v) * top_right + |
| // (1 - alpha_h) * alpha_v * bottom_left + |
| // alpha_h * alpha_v * bottom_right. |
| // |
| // Rearranging gives |
| // result = left + alpha_h * (right - left), |
| // where |
| // left = top_left + alpha_v * (bottom_left - top_left), |
| // right = top_right + alpha_v * (bottom_right - top_right). |
| |
| const float alphah = *w; |
| const float32x2_t valphav = vld1_dup_f32(w + 1); |
| w += 2; |
| |
| const float* itl = (const float*) ((uintptr_t) i[0] + input_offset); |
| const float* ibl = (const float*) ((uintptr_t) i[1] + input_offset); |
| i += 2; |
| |
| const float32x2_t vtltr = vld1_f32(itl); |
| const float32x2_t vblbr = vld1_f32(ibl); |
| |
| // Compute at once |
| // left_diff = bottom_left - top_left |
| // right_diff = bottom_right - top_right |
| const float32x2_t vldrd = vsub_f32(vblbr, vtltr); |
| const float32x2_t vlr = ${VMULADD_F32}(vtltr, vldrd, valphav); |
| |
| // Extract them and compute the result. |
| const float l = vget_lane_f32(vlr, 0); |
| const float r = vget_lane_f32(vlr, 1); |
| |
| *output++ = l + alphah * (r - l); |
| } |
| } |
| |
| input_offset += input_increment; |
| } while (--channels != 0); |
| } |