| // Copyright 2021 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert PIXEL_TILE >= 1 |
| $assert PIXEL_TILE % 4 == 0 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/ibilinear.h> |
| |
| |
| void xnn_f32_ibilinear_chw_ukernel__sse_p${PIXEL_TILE}( |
| size_t output_pixels, |
| size_t channels, |
| const float**restrict input, |
| size_t input_offset, |
| const float*restrict weights, |
| float*restrict output, |
| size_t input_increment) XNN_OOB_READS |
| { |
| assert(output_pixels != 0); |
| assert(channels != 0); |
| assert(input_increment % sizeof(float) == 0); |
| |
| do { |
| const float** i = input; |
| const float* w = weights; |
| size_t p = output_pixels; |
| $if PIXEL_TILE > 4: |
| for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) { |
| $for P in range(PIXEL_TILE): |
| const float* itl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); |
| const float* ibl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
| i += 2 * ${PIXEL_TILE}; |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const __m128 vw${ABC[P:P+4]}p0 = _mm_loadu_ps(w + ${2 * P}); |
| const __m128 vw${ABC[P:P+4]}p1 = _mm_loadu_ps(w + ${2 * P + 4}); |
| w += 2 * ${PIXEL_TILE}; |
| |
| $for P in range(0, PIXEL_TILE, 2): |
| const __m128 vtltr${ABC[P]} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) itl${ABC[P]}); |
| const __m128 vblbr${ABC[P]} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) ibl${ABC[P]}); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const __m128 valphah${ABC[P:P+4]} = _mm_shuffle_ps(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 valphav${ABC[P:P+4]} = _mm_shuffle_ps(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| $for P in range(0, PIXEL_TILE, 2): |
| const __m128 vtltr${ABC[P:P+2]} = _mm_loadh_pi(vtltr${ABC[P]}, (const __m64*) itl${ABC[P+1]}); |
| const __m128 vblbr${ABC[P:P+2]} = _mm_loadh_pi(vblbr${ABC[P]}, (const __m64*) ibl${ABC[P+1]}); |
| |
| $for P in range(0, PIXEL_TILE, 2): |
| const __m128 vldrd${ABC[P:P+2]} = _mm_sub_ps(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]}); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const __m128 vld${ABC[P:P+4]} = _mm_shuffle_ps(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 vrd${ABC[P:P+4]} = _mm_shuffle_ps(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const __m128 vtl${ABC[P:P+4]} = _mm_shuffle_ps(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 vtr${ABC[P:P+4]} = _mm_shuffle_ps(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const __m128 vl${ABC[P:P+4]} = _mm_add_ps(vtl${ABC[P:P+4]}, _mm_mul_ps(vld${ABC[P:P+4]}, valphav${ABC[P:P+4]})); |
| const __m128 vr${ABC[P:P+4]} = _mm_add_ps(vtr${ABC[P:P+4]}, _mm_mul_ps(vrd${ABC[P:P+4]}, valphav${ABC[P:P+4]})); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const __m128 vd${ABC[P:P+4]} = _mm_sub_ps(vr${ABC[P:P+4]}, vl${ABC[P:P+4]}); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| const __m128 vo${ABC[P:P+4]} = _mm_add_ps(vl${ABC[P:P+4]}, _mm_mul_ps(vd${ABC[P:P+4]}, valphah${ABC[P:P+4]})); |
| |
| $for P in range(0, PIXEL_TILE, 4): |
| _mm_storeu_ps(output + ${P}, vo${ABC[P:P+4]}); |
| output += ${PIXEL_TILE}; |
| } |
| |
| for (; p >= 4; p -= 4) { |
| $for P in range(4): |
| const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); |
| const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
| i += 8; |
| |
| const __m128 vw0 = _mm_loadu_ps(w); |
| const __m128 vw1 = _mm_loadu_ps(w + 4); |
| w += 8; |
| |
| $for P in range(0, 4, 2): |
| const __m128 vtltr${ABC[P]} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) itl${P}); |
| const __m128 vblbr${ABC[P]} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) ibl${P}); |
| |
| const __m128 valphah = _mm_shuffle_ps(vw0, vw1, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 valphav = _mm_shuffle_ps(vw0, vw1, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| $for P in range(0, 4, 2): |
| const __m128 vtltr${ABC[P:P+2]} = _mm_loadh_pi(vtltr${ABC[P]}, (const __m64*) itl${P+1}); |
| const __m128 vblbr${ABC[P:P+2]} = _mm_loadh_pi(vblbr${ABC[P]}, (const __m64*) ibl${P+1}); |
| |
| $for P in range(0, 4, 2): |
| const __m128 vldrd${ABC[P:P+2]} = _mm_sub_ps(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]}); |
| |
| const __m128 vld = _mm_shuffle_ps(vldrd01, vldrd23, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 vrd = _mm_shuffle_ps(vldrd01, vldrd23, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| const __m128 vtl = _mm_shuffle_ps(vtltr01, vtltr23, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 vtr = _mm_shuffle_ps(vtltr01, vtltr23, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| const __m128 vl = _mm_add_ps(vtl, _mm_mul_ps(vld, valphav)); |
| const __m128 vr = _mm_add_ps(vtr, _mm_mul_ps(vrd, valphav)); |
| |
| const __m128 vd = _mm_sub_ps(vr, vl); |
| const __m128 vo = _mm_add_ps(vl, _mm_mul_ps(vd, valphah)); |
| |
| _mm_storeu_ps(output, vo); |
| output += 4; |
| } |
| |
| if XNN_UNLIKELY(p != 0) { |
| if (p & 2) { |
| const __m128 vw = _mm_loadu_ps(w); |
| w += 4; |
| |
| const __m128 valphah = _mm_shuffle_ps(vw, vw, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 valphav = _mm_shuffle_ps(vw, vw, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| $for P in range(2): |
| const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); |
| const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
| i += 4; |
| |
| const __m128 vtltr = _mm_loadh_pi(_mm_loadl_pi(_mm_undefined_ps(), (const __m64*) itl0), (const __m64*) itl1); |
| const __m128 vblbr = _mm_loadh_pi(_mm_loadl_pi(_mm_undefined_ps(), (const __m64*) ibl0), (const __m64*) ibl1); |
| |
| const __m128 vldrd = _mm_sub_ps(vblbr, vtltr); |
| const __m128 vld = _mm_shuffle_ps(vldrd, vldrd, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 vrd = _mm_shuffle_ps(vldrd, vldrd, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| const __m128 vtl = _mm_shuffle_ps(vtltr, vtltr, _MM_SHUFFLE(2, 0, 2, 0)); |
| const __m128 vtr = _mm_shuffle_ps(vtltr, vtltr, _MM_SHUFFLE(3, 1, 3, 1)); |
| |
| const __m128 vl = _mm_add_ps(vtl, _mm_mul_ps(vld, valphav)); |
| const __m128 vr = _mm_add_ps(vtr, _mm_mul_ps(vrd, valphav)); |
| |
| const __m128 vd = _mm_sub_ps(vr, vl); |
| const __m128 vo = _mm_add_ps(vl, _mm_mul_ps(vd, valphah)); |
| |
| _mm_storel_pi((__m64*) output, vo); |
| output += 2; |
| } |
| |
| if (p & 1) { |
| // We are computing the following formula: |
| // result = (1 - alpha_h) * (1 - alpha_v) * top_left + |
| // alpha_h * (1 - alpha_v) * top_right + |
| // (1 - alpha_h) * alpha_v * bottom_left + |
| // alpha_h * alpha_v * bottom_right. |
| // |
| // Rearranging gives |
| // result = left + alpha_h * (right - left), |
| // where |
| // left = top_left + alpha_v * (bottom_left - top_left), |
| // right = top_right + alpha_v * (bottom_right - top_right). |
| |
| const float alphah = *w; |
| const __m128 valphav = _mm_load_ps1(w + 1); |
| w += 2; |
| |
| const float* itl = (const float*) ((uintptr_t) i[0] + input_offset); |
| const float* ibl = (const float*) ((uintptr_t) i[1] + input_offset); |
| i += 2; |
| |
| const __m128 vtltr = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) itl); |
| const __m128 vblbr = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) ibl); |
| |
| // Compute at once |
| // left_diff = bottom_left - top_left |
| // right_diff = bottom_right - top_right |
| const __m128 vldrd = _mm_sub_ps(vblbr, vtltr); |
| const __m128 vlr = _mm_add_ps(vtltr, _mm_mul_ps(vldrd, valphav)); |
| |
| // Extract them and compute the result. |
| const float l = _mm_cvtss_f32(vlr); |
| const float r = _mm_cvtss_f32(_mm_shuffle_ps(vlr, vlr, 1)); |
| |
| *output++ = l + alphah * (r - l); |
| } |
| } |
| |
| input_offset += input_increment; |
| } while (--channels != 0); |
| } |