blob: da2f81661233afeb330a3b523bab7320bc5b6f10 [file] [log] [blame] [edit]
// Copyright 2021 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert DATATYPE in ["QS8", "QU8"]
$assert BATCH_TILE % 16 == 0
$assert BATCH_TILE >= 16
$SIMD_TILE = BATCH_TILE // 4
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/vcvt.h>
$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE]
$_MM256_PACKXS_EPI16 = {"QS8": "_mm256_packs_epi16", "QU8": "_mm256_packus_epi16"}[DATATYPE]
$_MM_PACKXS_EPI16 = {"QS8": "_mm_packs_epi16", "QU8": "_mm_packus_epi16"}[DATATYPE]
$_MM256_MAX_EPX8 = {"QS8": "_mm256_max_epi8", "QU8": "_mm256_max_epu8"}[DATATYPE]
$_MM_MAX_EPX8 = {"QS8": "_mm_max_epi8", "QU8": "_mm_max_epu8"}[DATATYPE]
void xnn_f32_${DATATYPE.lower()}_vcvt_ukernel__avx2_x${BATCH_TILE}(
size_t n,
const float* x,
${XINT8_T}* y,
const union xnn_f32_${DATATYPE.lower()}_cvt_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(n != 0);
assert(n % sizeof(float) == 0);
assert(x != NULL);
assert(y != NULL);
const __m256 vscale = _mm256_load_ps(params->avx2.scale);
const __m256 voutput_max_less_zero_point = _mm256_load_ps(params->avx2.output_max_less_zero_point);
const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->avx2.output_zero_point);
$if BATCH_TILE > 16:
const __m256i vshuffle_mask = _mm256_load_si256((const __m256i*) params->avx2.shuffle_mask);
const __m256i voutput_min = _mm256_load_si256((const __m256i*) params->avx2.output_min);
$else:
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->avx2.output_min);
for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
__m256 vx${ABC[0:2]} = _mm256_loadu_ps(x);
$for N in range(2, SIMD_TILE, 2):
__m256 vx${ABC[N:N+2]} = _mm256_loadu_ps(x + ${N * 4});
x += ${BATCH_TILE};
$for N in range(0, SIMD_TILE, 2):
vx${ABC[N:N+2]} = _mm256_mul_ps(vx${ABC[N:N+2]}, vscale);
$for N in range(0, SIMD_TILE, 2):
vx${ABC[N:N+2]} = _mm256_min_ps(vx${ABC[N:N+2]}, voutput_max_less_zero_point);
$for N in range(0, SIMD_TILE, 2):
const __m256i vacc${ABC[N:N+2]} = _mm256_cvtps_epi32(vx${ABC[N:N+2]});
$for N in range(0, SIMD_TILE, 4):
__m256i vacc${ABC[N]}${ABC[N+2]}${ABC[N+1]}${ABC[N+3]} = _mm256_packs_epi32(vacc${ABC[N:N+2]}, vacc${ABC[N+2:N+4]});
$for N in range(0, SIMD_TILE, 4):
vacc${ABC[N]}${ABC[N+2]}${ABC[N+1]}${ABC[N+3]} = _mm256_adds_epi16(vacc${ABC[N]}${ABC[N+2]}${ABC[N+1]}${ABC[N+3]}, voutput_zero_point);
$for N in range(0, SIMD_TILE, 8):
$if N + 4 < SIMD_TILE:
const __m256i vy${ABC[N]}${ABC[N+2]}${ABC[N+4]}${ABC[N+6]}${ABC[N+1]}${ABC[N+3]}${ABC[N+5]}${ABC[N+7]} = ${_MM256_PACKXS_EPI16}(vacc${ABC[N]}${ABC[N+2]}${ABC[N+1]}${ABC[N+3]}, vacc${ABC[N+4]}${ABC[N+6]}${ABC[N+5]}${ABC[N+7]});
$else:
const __m128i vy${ABC[N]}${ABC[N+2]}${ABC[N+1]}${ABC[N+3]} = ${_MM_PACKXS_EPI16}(_mm256_castsi256_si128(vacc${ABC[N]}${ABC[N+2]}${ABC[N+1]}${ABC[N+3]}), _mm256_extracti128_si256(vacc${ABC[N]}${ABC[N+2]}${ABC[N+1]}${ABC[N+3]}, 1));
$for N in range(0, SIMD_TILE, 8):
$if N + 4 < SIMD_TILE:
__m256i vy${ABC[N:N+8]} = _mm256_permutevar8x32_epi32(vy${ABC[N]}${ABC[N+2]}${ABC[N+4]}${ABC[N+6]}${ABC[N+1]}${ABC[N+3]}${ABC[N+5]}${ABC[N+7]}, vshuffle_mask);
$else:
__m128i vy${ABC[N:N+4]} = _mm_shuffle_epi32(vy${ABC[N]}${ABC[N+2]}${ABC[N+1]}${ABC[N+3]}, _MM_SHUFFLE(3, 1, 2, 0));
$for N in range(0, SIMD_TILE, 8):
$if N + 4 < SIMD_TILE:
vy${ABC[N:N+8]} = ${_MM256_MAX_EPX8}(vy${ABC[N:N+8]}, voutput_min);
$elif BATCH_TILE > 16:
vy${ABC[N:N+4]} = ${_MM_MAX_EPX8}(vy${ABC[N:N+4]}, _mm256_castsi256_si128(voutput_min));
$else:
vy${ABC[N:N+4]} = ${_MM_MAX_EPX8}(vy${ABC[N:N+4]}, voutput_min);
$if SIMD_TILE > 4:
_mm256_storeu_si256((__m256i*) y, vy${ABC[0:8]});
$else:
_mm_storeu_si128((__m128i*) y, vy${ABC[0:4]});
$for N in range(8, SIMD_TILE, 8):
$if N + 4 < SIMD_TILE:
_mm256_storeu_si256((__m256i*) (y + ${N * 4}), vy${ABC[N:N+8]});
$else:
_mm_storeu_si128((__m128i*) (y + ${N * 4}), vy${ABC[N:N+4]});
y += ${BATCH_TILE};
}
for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
__m256 vx = _mm256_loadu_ps(x);
vx = _mm256_mul_ps(vx, vscale);
vx = _mm256_min_ps(vx, voutput_max_less_zero_point);
x += 8;
const __m256i vacc = _mm256_cvtps_epi32(vx);
__m128i vy = _mm_packs_epi32(_mm256_castsi256_si128(vacc), _mm256_extracti128_si256(vacc, 1));
vy = _mm_adds_epi16(vy, _mm256_castsi256_si128(voutput_zero_point));
vy = ${_MM_PACKXS_EPI16}(vy, vy);
$if BATCH_TILE > 16:
vy = ${_MM_MAX_EPX8}(vy, _mm256_castsi256_si128(voutput_min));
$else:
vy = ${_MM_MAX_EPX8}(vy, voutput_min);
_mm_storel_epi64((__m128i*) y, vy);
y += 8;
}
if XNN_UNLIKELY(n != 0) {
assert(n >= 1 * sizeof(float));
assert(n <= 7 * sizeof(float));
const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2.mask_table[7] - n));
__m256 vx = _mm256_maskload_ps(x, vmask);
vx = _mm256_mul_ps(vx, vscale);
vx = _mm256_min_ps(vx, voutput_max_less_zero_point);
const __m256i vacc = _mm256_cvtps_epi32(vx);
__m128i vy = _mm_packs_epi32(_mm256_castsi256_si128(vacc), _mm256_extracti128_si256(vacc, 1));
vy = _mm_adds_epi16(vy, _mm256_castsi256_si128(voutput_zero_point));
vy = ${_MM_PACKXS_EPI16}(vy, vy);
$if BATCH_TILE > 16:
vy = ${_MM_MAX_EPX8}(vy, _mm256_castsi256_si128(voutput_min));
$else:
vy = ${_MM_MAX_EPX8}(vy, voutput_min);
if (n & (4 * sizeof(float))) {
_mm_storeu_si32(y, vy);
y += 4;
vy = _mm_srli_epi64(vy, 32);
}
if (n & (2 * sizeof(float))) {
_mm_storeu_si16(y, vy);
y += 2;
vy = _mm_srli_epi32(vy, 16);
}
if (n & (1 * sizeof(float))) {
*y = (${XINT8_T}) _mm_extract_epi8(vy, 0);
}
}
}