| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert ELEMENTS_TILE % 8 == 0 |
| $assert ELEMENTS_TILE >= 8 |
| $SIMD_TILE = ELEMENTS_TILE // 8 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/raddexpminusmax.h> |
| |
| |
| static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; |
| |
| void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( |
| size_t elements, |
| const float* input, |
| float* sum, |
| float max) |
| { |
| assert(elements % sizeof(float) == 0); |
| |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); |
| // The smallest x for which expf(x) is normalized. |
| const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); |
| const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); |
| const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); |
| |
| const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); |
| const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); |
| const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); |
| const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); |
| const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); |
| |
| const __m256 vi_max = _mm256_set1_ps(max); |
| |
| $for K in range(ACCUMULATORS): |
| __m256 vacc${K} = _mm256_setzero_ps(); |
| for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { |
| // Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time. |
| const __m256 vi0 = _mm256_loadu_ps(input); |
| $for N in range(1, SIMD_TILE): |
| const __m256 vi${N} = _mm256_loadu_ps(input + ${N * 8}); |
| input += ${ELEMENTS_TILE}; |
| |
| // Subtract maximum input x := i - i_max. This implies x <= 0. |
| $for N in range(SIMD_TILE): |
| const __m256 vx${N} = _mm256_sub_ps(vi${N}, vi_max); |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| $for N in range(SIMD_TILE): |
| __m256 vn${N} = _mm256_fmadd_ps(vx${N}, vlog2e, vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. |
| // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. |
| $for N in range(SIMD_TILE): |
| const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${N}), 23)); |
| |
| // Subtract the large number back to get final elements := round(x / log(2)). |
| $for N in range(SIMD_TILE): |
| vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| $for N in range(SIMD_TILE): |
| __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N}); |
| |
| $for N in range(SIMD_TILE): |
| vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N}); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| $for N in range(SIMD_TILE): |
| __m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1); |
| |
| // Reconstruct the final f value: |
| // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) |
| // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // = s + (t * s) * p |
| $for N in range(SIMD_TILE): |
| vt${N} = _mm256_mul_ps(vt${N}, vs${N}); |
| |
| $for N in range(SIMD_TILE): |
| __m256 vf${N} = _mm256_fmadd_ps(vt${N}, vp${N}, vs${N}); |
| |
| // For inputs below zero cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| $for N in range(SIMD_TILE): |
| vf${N} = _mm256_andnot_ps(_mm256_cmp_ps(vx${N}, vdenorm_cutoff, _CMP_LT_OS), vf${N}); |
| |
| // Accumulate computed exponents. |
| $for N in range(SIMD_TILE): |
| vacc${N % ACCUMULATORS} = _mm256_add_ps(vacc${N % ACCUMULATORS}, vf${N}); |
| } |
| $if ACCUMULATORS > 1: |
| // Add up all accumulators to vacc0 |
| $ACC_SLICE = 1 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| vacc${A} = _mm256_add_ps(vacc${A}, vacc${A + ACC_SLICE}); |
| $ACC_SLICE *= 2 |
| |
| __m256 vacc = vacc0; |
| for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) { |
| // Load 8 inputs at a time. |
| const __m256 vi = _mm256_loadu_ps(input); |
| input += 8; |
| |
| // Subtract maximum input x := i - i_max. This implies x <= 0. |
| const __m256 vx = _mm256_sub_ps(vi, vi_max); |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. |
| // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
| |
| // Subtract the large number back to get final elements := round(x / log(2)). |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); |
| vp = _mm256_fmadd_ps(vp, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| |
| // Reconstruct the final f value: |
| // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) |
| // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // = s + (t * s) * p |
| vt = _mm256_mul_ps(vt, vs); |
| __m256 vf = _mm256_fmadd_ps(vt, vp, vs); |
| |
| // For inputs below zero cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); |
| |
| // Accumulate computed exponents. |
| vacc = _mm256_add_ps(vacc, vf); |
| } |
| if (elements != 0) { |
| assert(elements >= 1 * sizeof(float)); |
| assert(elements <= 7 * sizeof(float)); |
| const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements)); |
| |
| // Load up to 7 inputs at a time. |
| const __m256 vi = _mm256_maskload_ps(input, vmask); |
| |
| // Subtract maximum input x := i - i_max. This implies x <= 0. |
| const __m256 vx = _mm256_sub_ps(vi, vi_max); |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. |
| // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
| |
| // Subtract the large number back to get final elements := round(x / log(2)). |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); |
| vp = _mm256_fmadd_ps(vp, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| |
| // Reconstruct the final f value: |
| // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) |
| // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // = s + (t * s) * p |
| vt = _mm256_mul_ps(vt, vs); |
| __m256 vf = _mm256_fmadd_ps(vt, vp, vs); |
| |
| // For inputs below zero cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); |
| |
| // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. |
| vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); |
| } |
| // Reduce 8 elements in the SIMD register |
| __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); |
| vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); |
| vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); |
| _mm_store_ss(sum, vacc_lo); |
| _mm256_zeroupper(); |
| } |