blob: 937d7f50268b4adbf8718b536e5a4ca45f7a1819 [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ELEMENTS_TILE % 8 == 0
$assert ELEMENTS_TILE >= 8
$SIMD_TILE = ELEMENTS_TILE // 8
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/raddexpminusmax.h>
static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t elements,
const float* input,
float* sum,
float max)
{
assert(elements % sizeof(float) == 0);
const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
// The smallest x for which expf(x) is normalized.
const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
const __m256 vi_max = _mm256_set1_ps(max);
$for K in range(ACCUMULATORS):
__m256 vacc${K} = _mm256_setzero_ps();
for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
// Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time.
const __m256 vi0 = _mm256_loadu_ps(input);
$for N in range(1, SIMD_TILE):
const __m256 vi${N} = _mm256_loadu_ps(input + ${N * 8});
input += ${ELEMENTS_TILE};
// Subtract maximum input x := i - i_max. This implies x <= 0.
$for N in range(SIMD_TILE):
const __m256 vx${N} = _mm256_sub_ps(vi${N}, vi_max);
// Compute reduced argument elements := round(x / log(2)).
$for N in range(SIMD_TILE):
__m256 vn${N} = _mm256_fmadd_ps(vx${N}, vlog2e, vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
$for N in range(SIMD_TILE):
const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${N}), 23));
// Subtract the large number back to get final elements := round(x / log(2)).
$for N in range(SIMD_TILE):
vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
$for N in range(SIMD_TILE):
__m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N});
$for N in range(SIMD_TILE):
vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N});
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
$for N in range(SIMD_TILE):
__m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1);
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
$for N in range(SIMD_TILE):
vt${N} = _mm256_mul_ps(vt${N}, vs${N});
$for N in range(SIMD_TILE):
__m256 vf${N} = _mm256_fmadd_ps(vt${N}, vp${N}, vs${N});
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
$for N in range(SIMD_TILE):
vf${N} = _mm256_andnot_ps(_mm256_cmp_ps(vx${N}, vdenorm_cutoff, _CMP_LT_OS), vf${N});
// Accumulate computed exponents.
$for N in range(SIMD_TILE):
vacc${N % ACCUMULATORS} = _mm256_add_ps(vacc${N % ACCUMULATORS}, vf${N});
}
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc${A} = _mm256_add_ps(vacc${A}, vacc${A + ACC_SLICE});
$ACC_SLICE *= 2
__m256 vacc = vacc0;
for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
// Load 8 inputs at a time.
const __m256 vi = _mm256_loadu_ps(input);
input += 8;
// Subtract maximum input x := i - i_max. This implies x <= 0.
const __m256 vx = _mm256_sub_ps(vi, vi_max);
// Compute reduced argument elements := round(x / log(2)).
__m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
// Subtract the large number back to get final elements := round(x / log(2)).
vn = _mm256_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = _mm256_mul_ps(vt, vs);
__m256 vf = _mm256_fmadd_ps(vt, vp, vs);
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
// Accumulate computed exponents.
vacc = _mm256_add_ps(vacc, vf);
}
if (elements != 0) {
assert(elements >= 1 * sizeof(float));
assert(elements <= 7 * sizeof(float));
const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
// Load up to 7 inputs at a time.
const __m256 vi = _mm256_maskload_ps(input, vmask);
// Subtract maximum input x := i - i_max. This implies x <= 0.
const __m256 vx = _mm256_sub_ps(vi, vi_max);
// Compute reduced argument elements := round(x / log(2)).
__m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
// Subtract the large number back to get final elements := round(x / log(2)).
vn = _mm256_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = _mm256_mul_ps(vt, vs);
__m256 vf = _mm256_fmadd_ps(vt, vp, vs);
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
// Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged.
vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask)));
}
// Reduce 8 elements in the SIMD register
__m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1));
vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo));
vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo));
_mm_store_ss(sum, vacc_lo);
_mm256_zeroupper();
}