| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert ELEMENTS_TILE % 8 == 0 |
| $assert ELEMENTS_TILE >= 8 |
| $SIMD_TILE = ELEMENTS_TILE // 8 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| #include <math.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/raddextexp.h> |
| |
| |
| static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; |
| |
| void xnn_f32_raddextexp_ukernel__avx2_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( |
| size_t elements, |
| const float* x, |
| float* sum) |
| { |
| assert(elements % sizeof(float) == 0); |
| |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); |
| const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); |
| const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); |
| |
| // The smallest elements such that 2**elements is considered non-negligible. |
| // For smaller elements, 2**elements is replaced with zero. |
| const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); |
| const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); |
| |
| const __m256 vc0 = _mm256_set1_ps(1.0f); |
| const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); |
| const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); |
| const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); |
| const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); |
| const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); |
| |
| $for K in range(ACCUMULATORS): |
| __m256 vaccv${K} = _mm256_setzero_ps(); |
| $for K in range(ACCUMULATORS): |
| __m256 vacce${K} = vminus_inf; |
| for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { |
| // Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time. |
| const __m256 vx0 = _mm256_loadu_ps(x); |
| $for N in range(1, SIMD_TILE): |
| const __m256 vx${N} = _mm256_loadu_ps(x + ${N * 8}); |
| x += ${ELEMENTS_TILE}; |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| $for N in range(SIMD_TILE): |
| const __m256 vn${N} = _mm256_round_ps(_mm256_mul_ps(vx${N}, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| $for N in range(SIMD_TILE): |
| __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N}); |
| |
| $for N in range(SIMD_TILE): |
| vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N}); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| $for N in range(SIMD_TILE): |
| __m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc0); |
| |
| // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where |
| // - vnX is "exponent" |
| // - vpX is "mantissa" |
| // |
| // exp2(ae) * av + exp2(be) * bv = |
| // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv |
| // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) |
| // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) |
| // |
| // For computational efficiency we may add several "extended" floating-point numbers at a time. |
| $for N in range(SIMD_TILE): |
| $if N < ACCUMULATORS: |
| __m256 vmax_e${N} = _mm256_max_ps(vacce${N}, vn${N}); |
| $else: |
| vmax_e${N % ACCUMULATORS} = _mm256_max_ps(vmax_e${N % ACCUMULATORS}, vn${N}); |
| |
| // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. |
| // This replacement is done in two steps: |
| // 1. Clamp minimum delta_e at -127.0. |
| // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 |
| $for K in range(ACCUMULATORS): |
| const __m256 vdelta_acce${K} = _mm256_max_ps(_mm256_sub_ps(vacce${K}, vmax_e${K}), vmin_exponent); |
| $for N in range(SIMD_TILE): |
| const __m256 vdelta_e${N} = _mm256_max_ps(_mm256_sub_ps(vn${N}, vmax_e${N % ACCUMULATORS}), vmin_exponent); |
| |
| // Convert delta-exponents into scale factors: |
| // - s = exp2(delta_e) when delta_e > -127.0 |
| // - s = 0.0 when delta_e <= -127.0 |
| // |
| // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. |
| $for K in range(ACCUMULATORS): |
| const __m256 vaccs${K} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce${K}, vmagic_bias)), 23)); |
| $for N in range(SIMD_TILE): |
| const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e${N}, vmagic_bias)), 23)); |
| |
| // Update accumulated "mantissa" and "exponent" values |
| $for K in range(ACCUMULATORS): |
| vaccv${K} = _mm256_mul_ps(vaccv${K}, vaccs${K}); |
| $for N in range(SIMD_TILE): |
| vaccv${N % ACCUMULATORS} = _mm256_fmadd_ps(vp${N}, vs${N}, vaccv${N % ACCUMULATORS}); |
| |
| $for K in range(ACCUMULATORS): |
| vacce${K} = vmax_e${K}; |
| } |
| |
| // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. |
| $if ACCUMULATORS > 1: |
| $for A in range(0, ACCUMULATORS, 2): |
| $if A + 1 < ACCUMULATORS: |
| const __m256 vmax_acce${ABC[A:A+2]} = _mm256_max_ps(vacce${A}, vacce${A+1}); |
| $else: |
| const __m256 vmax_acce${ABC[A]} = vacce${A}; |
| $ACC_SLICE = 2 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| const __m256 vmax_acce${ABC[A:min(A+ACC_SLICE*2, ACCUMULATORS)]} = _mm256_max_ps(vmax_acce${ABC[A:A+ACC_SLICE]}, vmax_acce${ABC[A+ACC_SLICE:min(ACCUMULATORS,A+ACC_SLICE*2)]}); |
| $ACC_SLICE *= 2 |
| |
| $for K in range(ACCUMULATORS): |
| const __m256 vdelta_acce${K} = _mm256_max_ps(_mm256_sub_ps(vacce${K}, vmax_acce${ABC[0:ACCUMULATORS]}), vmin_exponent); |
| |
| $for K in range(ACCUMULATORS): |
| const __m256 vaccs${K} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce${K}, vmagic_bias)), 23)); |
| |
| __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0); |
| $for K in range(1, ACCUMULATORS): |
| vaccv = _mm256_fmadd_ps(vaccv${K}, vaccs${K}, vaccv); |
| __m256 vacce = vmax_acce${ABC[0:ACCUMULATORS]}; |
| $else: |
| __m256 vaccv = vaccv0; |
| __m256 vacce = vacce0; |
| |
| for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) { |
| // Load 8 inputs at a time. |
| const __m256 vx = _mm256_loadu_ps(x); |
| x += 8; |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); |
| vp = _mm256_fmadd_ps(vp, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| vp = _mm256_fmadd_ps(vp, vt, vc0); |
| |
| // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. |
| const __m256 vmax_e = _mm256_max_ps(vacce, vn); |
| |
| // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. |
| const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); |
| const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); |
| |
| // Convert exponents into scale factors. |
| const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); |
| |
| // Update accumulated "mantissa" and "exponent" values. |
| vaccv = _mm256_mul_ps(vaccv, vaccs); |
| vaccv = _mm256_fmadd_ps(vp, vs, vaccv); |
| |
| vacce = vmax_e; |
| } |
| if XNN_UNLIKELY(elements != 0) { |
| assert(elements >= 1 * sizeof(float)); |
| assert(elements <= 7 * sizeof(float)); |
| const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements)); |
| |
| // Load up to 7 inputs at a time. |
| const __m256 vx = _mm256_maskload_ps(x, vmask); |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Correct reduced argument elements for masked out elements. |
| vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); |
| vp = _mm256_fmadd_ps(vp, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| vp = _mm256_fmadd_ps(vp, vt, vc0); |
| vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); |
| |
| // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. |
| const __m256 vmax_e = _mm256_max_ps(vacce, vn); |
| |
| // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. |
| const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); |
| const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); |
| |
| // Convert exponents into scale factors. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); |
| const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); |
| |
| // Update accumulated "mantissa" and "exponent" values. |
| vaccv = _mm256_mul_ps(vaccv, vaccs); |
| vaccv = _mm256_fmadd_ps(vp, vs, vaccv); |
| |
| vacce = vmax_e; |
| } |
| |
| // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. |
| __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); |
| vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); |
| vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); |
| const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); |
| const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); |
| |
| vaccv = _mm256_mul_ps(vaccv, vaccs); |
| __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); |
| vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); |
| vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); |
| |
| _mm_store_ss(&sum[0], vaccv_sum); |
| _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); |
| |
| _mm256_zeroupper(); |
| } |