| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert ELEMENTS_TILE % 16 == 0 |
| $assert ELEMENTS_TILE >= 16 |
| $SIMD_TILE = ELEMENTS_TILE // 16 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| #include <math.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/intrinsics-polyfill.h> |
| #include <xnnpack/raddextexp.h> |
| |
| |
| void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( |
| size_t elements, |
| const float* x, |
| float* sum) |
| { |
| assert(elements % sizeof(float) == 0); |
| |
| const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); |
| const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); |
| const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); |
| |
| const __m512 vc0 = _mm512_set1_ps(1.0f); |
| const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); |
| const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); |
| const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); |
| const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); |
| const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); |
| |
| const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); |
| |
| $for K in range(ACCUMULATORS): |
| __m512 vaccv${K} = _mm512_setzero_ps(); |
| $for K in range(ACCUMULATORS): |
| __m512 vacce${K} = vminus_inf; |
| for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { |
| // Load ${ELEMENTS_TILE} (${SIMD_TILE}x16) inputs at a time. |
| const __m512 vx0 = _mm512_loadu_ps(x); |
| $for N in range(1, SIMD_TILE): |
| const __m512 vx${N} = _mm512_loadu_ps(x + ${N * 16}); |
| x += ${ELEMENTS_TILE}; |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| $for N in range(SIMD_TILE): |
| const __m512 vn${N} = _mm512_roundscale_ps(_mm512_mul_ps(vx${N}, vlog2e), 0); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| $for N in range(SIMD_TILE): |
| __m512 vt${N} = _mm512_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N}); |
| |
| $for N in range(SIMD_TILE): |
| vt${N} = _mm512_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N}); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| $for N in range(SIMD_TILE): |
| __m512 vp${N} = _mm512_fmadd_ps(vc5, vt${N}, vc4); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc3); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc2); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc1); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc0); |
| |
| // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where |
| // - vnX is "exponent" |
| // - vpX is "mantissa" |
| // |
| // exp2(ae) * av + exp2(be) * bv = |
| // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv |
| // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) |
| // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) |
| // |
| // For computational efficiency we add three "extended" floating-point numbers at a time. |
| $for N in range(SIMD_TILE): |
| $if N < ACCUMULATORS: |
| __m512 vmax_e${N} = _mm512_max_ps(vacce${N}, vn${N}); |
| $else: |
| vmax_e${N % ACCUMULATORS} = _mm512_max_ps(vmax_e${N % ACCUMULATORS}, vn${N}); |
| |
| $for K in range(ACCUMULATORS): |
| const __m512 vdelta_acce${K} = _mm512_sub_ps(vacce${K}, vmax_e${K}); |
| $for N in range(SIMD_TILE): |
| const __m512 vdelta_e${N} = _mm512_sub_ps(vn${N}, vmax_e${N % ACCUMULATORS}); |
| |
| // Update accumulated "mantissa" and "exponent" values |
| $for K in range(ACCUMULATORS): |
| vaccv${K} = _mm512_scalef_ps(vaccv${K}, vdelta_acce${K}); |
| $for N in range(SIMD_TILE): |
| vaccv${N % ACCUMULATORS} = _mm512_add_ps(vaccv${N % ACCUMULATORS}, _mm512_scalef_ps(vp${N}, vdelta_e${N})); |
| |
| $for K in range(ACCUMULATORS): |
| vacce${K} = vmax_e${K}; |
| } |
| |
| // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. |
| $if ACCUMULATORS > 1: |
| $for A in range(0, ACCUMULATORS, 2): |
| $if A + 1 < ACCUMULATORS: |
| const __m512 vmax_acce${ABC[A:A+2]} = _mm512_max_ps(vacce${A}, vacce${A+1}); |
| $else: |
| const __m512 vmax_acce${ABC[A]} = vacce${A}; |
| $ACC_SLICE = 2 |
| $while ACC_SLICE < ACCUMULATORS: |
| $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
| $if A + ACC_SLICE < ACCUMULATORS: |
| const __m512 vmax_acce${ABC[A:min(A+ACC_SLICE*2, ACCUMULATORS)]} = _mm512_max_ps(vmax_acce${ABC[A:A+ACC_SLICE]}, vmax_acce${ABC[A+ACC_SLICE:min(ACCUMULATORS,A+ACC_SLICE*2)]}); |
| $ACC_SLICE *= 2 |
| |
| $for K in range(ACCUMULATORS): |
| const __m512 vdelta_acce${K} = _mm512_sub_ps(vacce${K}, vmax_acce${ABC[0:ACCUMULATORS]}); |
| |
| __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); |
| $for K in range(1, ACCUMULATORS): |
| vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv${K}, vdelta_acce${K})); |
| __m512 vacce = vmax_acce${ABC[0:ACCUMULATORS]}; |
| $else: |
| __m512 vaccv = vaccv0; |
| __m512 vacce = vacce0; |
| |
| for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) { |
| // Load 16 inputs at a time. |
| const __m512 vx = _mm512_loadu_ps(x); |
| x += 16; |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); |
| vp = _mm512_fmadd_ps(vp, vt, vc3); |
| vp = _mm512_fmadd_ps(vp, vt, vc2); |
| vp = _mm512_fmadd_ps(vp, vt, vc1); |
| vp = _mm512_fmadd_ps(vp, vt, vc0); |
| |
| // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. |
| const __m512 vmax_e = _mm512_max_ps(vacce, vn); |
| const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); |
| const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); |
| vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); |
| vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); |
| |
| vacce = vmax_e; |
| } |
| if XNN_UNLIKELY(elements != 0) { |
| // Prepare mask for valid 32-bit elements (depends on elements). |
| elements >>= 2 /* log2(sizeof(float)) */; |
| const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1))); |
| |
| // Load up to 15 inputs at a time. |
| const __m512 vx = _mm512_maskz_loadu_ps(vmask, x); |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); |
| vp = _mm512_fmadd_ps(vp, vt, vc3); |
| vp = _mm512_fmadd_ps(vp, vt, vc2); |
| vp = _mm512_fmadd_ps(vp, vt, vc1); |
| vp = _mm512_fmadd_ps(vp, vt, vc0); |
| |
| // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. |
| const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); |
| const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); |
| const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); |
| vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); |
| vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); |
| vacce = vmax_e; |
| } |
| |
| // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. |
| const float vmax_acce = _mm512_reduce_max_ps(vacce); |
| const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); |
| |
| sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); |
| sum[1] = vmax_acce; |
| |
| _mm256_zeroupper(); |
| } |