| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| #include <xnnpack/math.h> |
| #include <xnnpack/spmm.h> |
| |
| |
| void xnn_f32_spmm_minmax_ukernel_${MR}x${NR}__scalar${"_x" + str(UNROLL) if UNROLL > 1 else ""}( |
| size_t mc, |
| size_t nc, |
| const float*restrict input, |
| const float*restrict weights, |
| const int32_t*restrict widx_dmap, |
| const uint32_t*restrict nidx_nnzmap, |
| float*restrict output, |
| size_t output_stride, |
| const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) |
| { |
| assert(mc != 0); |
| assert(mc % sizeof(float) == 0); |
| assert(nc != 0); |
| |
| const float vmin = params->scalar.min; |
| const float vmax = params->scalar.max; |
| size_t output_decrement = output_stride * nc - ${MR} * sizeof(float); |
| while (mc >= ${MR} * sizeof(float)) { |
| const float*restrict w = weights; |
| const int32_t* dmap = widx_dmap; |
| const uint32_t* nnzmap = nidx_nnzmap; |
| size_t n = nc; |
| while (n >= ${NR}) { |
| uint32_t nnz = *nnzmap++; |
| $for N in range(0, NR, 1): |
| float vacc0x${N} = *w++; |
| $for M in range(1, MR): |
| float vacc${ABC[M]}x${N} = vacc0x${N}; |
| if XNN_LIKELY(nnz != 0) { |
| do { |
| const intptr_t diff = *dmap++; |
| $for M in range(MR): |
| const float vi${ABC[M]} = input[${M}]; |
| input = (const float*restrict) ((uintptr_t) input + (uintptr_t) diff); |
| $for N in range(0, NR, 1): |
| const float vw${N} = *w++; |
| $for N in range(0, NR, 1): |
| $for M in range(MR): |
| vacc${ABC[M]}x${N} += vi${ABC[M]} * vw${N}; |
| } while (--nnz != 0); |
| } |
| $for N in range(NR): |
| $for M in range(MR): |
| float vout${ABC[M]}x${N} = math_min_f32(vacc${ABC[M]}x${N}, vmax); |
| $for N in range(NR): |
| $for M in range(MR): |
| vout${ABC[M]}x${N} = math_max_f32(vout${ABC[M]}x${N}, vmin); |
| $for M in range(MR): |
| output[${M}] = vout${ABC[M]}x${N}; |
| $for N in range(NR): |
| $for M in range(MR): |
| output[${M}] = vout${ABC[M]}x${N}; |
| output = (float*restrict) ((uintptr_t) output + output_stride); |
| n -= ${NR}; |
| } |
| if XNN_UNLIKELY(n != 0) { |
| do { |
| uint32_t nnz = *nnzmap++; |
| float vacc0 = *w++; |
| $for M in range(1, MR): |
| float vacc${ABC[M]} = vacc0; |
| if XNN_LIKELY(nnz != 0) { |
| do { |
| const intptr_t diff = *dmap++; |
| $for M in range(MR): |
| const float vi${ABC[M]} = input[${M}]; |
| input = (const float*restrict) ((uintptr_t) input + (uintptr_t) diff); |
| const float vw = *w++; |
| $for M in range(MR): |
| vacc${ABC[M]} += vi${ABC[M]} * vw; |
| } while (--nnz != 0); |
| } |
| $for M in range(MR): |
| float vout${ABC[M]} = math_min_f32(vacc${ABC[M]}, vmax); |
| $for M in range(MR): |
| vout${ABC[M]} = math_max_f32(vout${ABC[M]}, vmin); |
| $for M in range(MR): |
| output[${M}] = vout${ABC[M]}; |
| output = (float*restrict) ((uintptr_t) output + output_stride); |
| n -= 1; |
| } while (n != 0); |
| } |
| output = (float*restrict) ((uintptr_t) output - output_decrement); |
| input += ${MR}; |
| mc -= ${MR} * sizeof(float); |
| } |
| if XNN_UNLIKELY(mc != 0) { |
| $for LOG2M in reversed(range((MR - 1).bit_length())): |
| $SUBMR = 1 << LOG2M |
| $if SUBMR * 2 >= MR: |
| output_decrement += ${MR - SUBMR} * sizeof(float); |
| $else: |
| output_decrement += ${SUBMR} * sizeof(float); |
| if (mc & (${SUBMR} * sizeof(float))) { |
| const float*restrict w = weights; |
| const int32_t* dmap = widx_dmap; |
| const uint32_t* nnzmap = nidx_nnzmap; |
| size_t n = nc; |
| while (n >= ${NR}) { |
| uint32_t nnz = *nnzmap++; |
| $for N in range(0, NR, 1): |
| float vacc0x${N} = *w++; |
| $for M in range(1, SUBMR): |
| float vacc${ABC[M]}x${N} = vacc0x${N}; |
| if XNN_LIKELY(nnz != 0) { |
| do { |
| const intptr_t diff = *dmap++; |
| $for M in range(SUBMR): |
| const float vi${ABC[M]} = input[${M}]; |
| input = (const float*restrict) ((uintptr_t) input + (uintptr_t) diff); |
| $for N in range(0, NR, 1): |
| const float vw${N} = *w++; |
| $for N in range(0, NR, 1): |
| $for M in range(SUBMR): |
| vacc${ABC[M]}x${N} += vi${ABC[M]} * vw${N}; |
| } while (--nnz != 0); |
| } |
| $for N in range(0, NR, 1): |
| $for M in range(SUBMR): |
| float vout${ABC[M]}x${N} = math_min_f32(vacc${ABC[M]}x${N}, vmax); |
| $for N in range(0, NR, 1): |
| $for M in range(SUBMR): |
| vout${ABC[M]}x${N} = math_max_f32(vout${ABC[M]}x${N}, vmin); |
| $for N in range(NR): |
| $for M in range(SUBMR): |
| output[${M}] = vout${ABC[M]}x${N}; |
| output = (float*restrict) ((uintptr_t) output + output_stride); |
| n -= ${NR}; |
| } |
| if XNN_UNLIKELY(n != 0) { |
| do { |
| uint32_t nnz = *nnzmap++; |
| float vacc0 = *w++; |
| $for M in range(1, SUBMR): |
| float vacc${ABC[M]} = vacc0; |
| if XNN_LIKELY(nnz != 0) { |
| do { |
| const intptr_t diff = *dmap++; |
| $for M in range(SUBMR): |
| const float vi${ABC[M]} = input[${M}]; |
| input = (const float*restrict) ((uintptr_t) input + (uintptr_t) diff); |
| const float vw = *w++; |
| $for M in range(SUBMR): |
| vacc${ABC[M]} += vi${ABC[M]} * vw; |
| } while (--nnz != 0); |
| } |
| $for M in range(SUBMR): |
| float vout${ABC[M]} = math_min_f32(vacc${ABC[M]}, vmax); |
| $for M in range(SUBMR): |
| vout${ABC[M]} = math_max_f32(vout${ABC[M]}, vmin); |
| $for M in range(SUBMR): |
| output[${M}] = vout${ABC[M]}; |
| output = (float*restrict) ((uintptr_t) output + output_stride); |
| n -= 1; |
| } while (n != 0); |
| } |
| output = (float*restrict) ((uintptr_t) output - output_decrement); |
| input += ${SUBMR}; |
| } |
| } |
| } |