| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert BATCH_TILE % 4 == 0 |
| $assert BATCH_TILE >= 4 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| $assert OP in ["ADD", "DIV", "MAX", "MIN", "MUL", "SUB", "SQRDIFF"] |
| $assert ACTIVATION in ["LINEAR", "MINMAX"] |
| #include <assert.h> |
| |
| #include <xmmintrin.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/intrinsics-polyfill.h> |
| #include <xnnpack/vbinary.h> |
| |
| |
| $_MM_OP_PS = { |
| $ "ADD": lambda x, y: "_mm_add_ps(%s, %s)" % (x, y), |
| $ "DIV": lambda x, y: "_mm_div_ps(%s, %s)" % (x, y), |
| $ "MAX": lambda x, y: "_mm_max_ps(%s, %s)" % (x, y), |
| $ "MIN": lambda x, y: "_mm_min_ps(%s, %s)" % (x, y), |
| $ "MUL": lambda x, y: "_mm_mul_ps(%s, %s)" % (x, y), |
| $ "SUB": lambda x, y: "_mm_sub_ps(%s, %s)" % (x, y), |
| $ "SQRDIFF": lambda x, y: "_mm_sub_ps(%s, %s)" % (x, y), |
| $}[OP] |
| $SUFFIX = {"LINEAR": "", "MINMAX": "_minmax"}[ACTIVATION] |
| $PARAMS = {"LINEAR": "xnn_f32_default_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION] |
| void xnn_f32_v${OP.lower()}${SUFFIX}_ukernel__sse_x${BATCH_TILE}( |
| size_t n, |
| const float* a, |
| const float* b, |
| float* y, |
| const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(n != 0); |
| assert(n % sizeof(float) == 0); |
| assert(a != NULL); |
| assert(b != NULL); |
| assert(y != NULL); |
| |
| $if ACTIVATION == "MINMAX": |
| const __m128 vy_min = _mm_load_ps(params->sse.min); |
| const __m128 vy_max = _mm_load_ps(params->sse.max); |
| |
| for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) { |
| const __m128 va${ABC[0:4]} = _mm_loadu_ps(a); |
| $for N in range(4, BATCH_TILE, 4): |
| const __m128 va${ABC[N:N+4]} = _mm_loadu_ps(a + ${N}); |
| a += ${BATCH_TILE}; |
| |
| const __m128 vb${ABC[0:4]} = _mm_loadu_ps(b); |
| $for N in range(4, BATCH_TILE, 4): |
| const __m128 vb${ABC[N:N+4]} = _mm_loadu_ps(b + ${N}); |
| b += ${BATCH_TILE}; |
| |
| $for N in range(0, BATCH_TILE, 4): |
| __m128 vy${ABC[N:N+4]} = ${_MM_OP_PS("va" + ABC[N:N+4], "vb" + ABC[N:N+4])}; |
| |
| $if OP == "SQRDIFF": |
| $for N in range(0, BATCH_TILE, 4): |
| vy${ABC[N:N+4]} = _mm_mul_ps(vy${ABC[N:N+4]}, vy${ABC[N:N+4]}); |
| |
| $if ACTIVATION == "MINMAX": |
| $for N in range(0, BATCH_TILE, 4): |
| vy${ABC[N:N+4]} = _mm_max_ps(vy${ABC[N:N+4]}, vy_min); |
| |
| $for N in range(0, BATCH_TILE, 4): |
| vy${ABC[N:N+4]} = _mm_min_ps(vy${ABC[N:N+4]}, vy_max); |
| |
| _mm_storeu_ps(y, vy${ABC[0:4]}); |
| $for N in range(4, BATCH_TILE, 4): |
| _mm_storeu_ps(y + ${N}, vy${ABC[N:N+4]}); |
| y += ${BATCH_TILE}; |
| } |
| $if BATCH_TILE > 4: |
| for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { |
| const __m128 va0123 = _mm_loadu_ps(a); |
| a += 4; |
| |
| const __m128 vb0123 = _mm_loadu_ps(b); |
| b += 4; |
| |
| __m128 vy0123 = ${_MM_OP_PS("va0123", "vb0123")}; |
| $if OP == "SQRDIFF": |
| vy0123 = _mm_mul_ps(vy0123, vy0123); |
| $if ACTIVATION == "MINMAX": |
| vy0123 = _mm_max_ps(vy0123, vy_min); |
| vy0123 = _mm_min_ps(vy0123, vy_max); |
| _mm_storeu_ps(y, vy0123); |
| y += 4; |
| } |
| if XNN_UNLIKELY(n != 0) { |
| const __m128 va0123 = _mm_loadu_ps(a); |
| const __m128 vb0123 = _mm_loadu_ps(b); |
| |
| __m128 vy0123 = ${_MM_OP_PS("va0123", "vb0123")}; |
| $if OP == "SQRDIFF": |
| vy0123 = _mm_mul_ps(vy0123, vy0123); |
| $if ACTIVATION == "MINMAX": |
| vy0123 = _mm_max_ps(vy0123, vy_min); |
| vy0123 = _mm_min_ps(vy0123, vy_max); |
| if (n & (2 * sizeof(float))) { |
| _mm_storel_pi((__m64*) y, vy0123); |
| vy0123 = _mm_movehl_ps(vy0123, vy0123); |
| y += 2; |
| } |
| if (n & (1 * sizeof(float))) { |
| _mm_store_ss(y, vy0123); |
| } |
| } |
| } |