| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert BATCH_TILE % 8 == 0 |
| $assert BATCH_TILE >= 8 |
| $SIMD_TILE = BATCH_TILE // 8 |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/vunary.h> |
| |
| |
| extern XNN_INTERNAL const int xnn_table_exp2minus_k_over_16[16]; |
| |
| void xnn_f32_velu_ukernel__avx2_rr1_lut16_p3_gather_x${BATCH_TILE}( |
| size_t n, |
| const float* x, |
| float* y, |
| const union xnn_f32_elu_params params[restrict XNN_MIN_ELEMENTS(1)]) |
| { |
| assert(n % sizeof(float) == 0); |
| |
| const __m256 vprescale = _mm256_load_ps(params->avx2_rr1_lut16_p3.prescale); |
| const __m256 valpha = _mm256_load_ps(params->avx2_rr1_lut16_p3.alpha); |
| const __m256 vbeta = _mm256_load_ps(params->avx2_rr1_lut16_p3.beta); |
| const __m256 vsat_cutoff = _mm256_load_ps(params->avx2_rr1_lut16_p3.sat_cutoff); |
| const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_lut16_p3.magic_bias); |
| const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_lut16_p3.log2e); |
| const __m256i vindex_mask = _mm256_load_si256((const __m256i*) params->avx2_rr1_lut16_p3.index_mask); |
| const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_lut16_p3.minus_ln2); |
| const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_lut16_p3.c3); |
| const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_lut16_p3.c2); |
| |
| $if BATCH_TILE > 8: |
| for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) { |
| __m256 vx0 = _mm256_loadu_ps(x); |
| $for N in range(1, SIMD_TILE): |
| __m256 vx${N} = _mm256_loadu_ps(x + ${N * 8}); |
| x += ${BATCH_TILE}; |
| |
| $for N in range(SIMD_TILE): |
| const __m256 vz${N} = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx${N}, vprescale)); |
| |
| $for N in range(SIMD_TILE): |
| __m256 vn${N} = _mm256_fmadd_ps(vz${N}, vlog2e, vmagic_bias); |
| |
| $for N in range(SIMD_TILE): |
| const __m256i vidx${N} = _mm256_and_si256(_mm256_castps_si256(vn${N}), vindex_mask); |
| const __m256i vl${N} = _mm256_i32gather_epi32(xnn_table_exp2minus_k_over_16, vidx${N}, sizeof(float)); |
| |
| $for N in range(SIMD_TILE): |
| const __m256i ven${N} = _mm256_slli_epi32(_mm256_castps_si256(vn${N}), 19); |
| vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias); |
| |
| $for N in range(SIMD_TILE): |
| __m256 vs${N} = _mm256_castsi256_ps(_mm256_add_epi32(vl${N}, ven${N})); |
| __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2, vz${N}); |
| |
| $for N in range(SIMD_TILE): |
| __m256 vp${N} = _mm256_fmadd_ps(vc3, vt${N}, vc2); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_mul_ps(vp${N}, vt${N}); |
| vt${N} = _mm256_mul_ps(vt${N}, vs${N}); |
| |
| $for N in range(SIMD_TILE): |
| vs${N} = _mm256_fmsub_ps(vs${N}, valpha, valpha); |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vt${N}); |
| |
| $for N in range(SIMD_TILE): |
| const __m256 ve${N} = _mm256_fmadd_ps(vp${N}, valpha, vs${N}); |
| vx${N} = _mm256_mul_ps(vx${N}, vbeta); |
| |
| $for N in range(SIMD_TILE): |
| const __m256 vy${N} = _mm256_blendv_ps(vx${N}, ve${N}, vx${N}); |
| |
| _mm256_storeu_ps(y, vy0); |
| $for N in range(1, SIMD_TILE): |
| _mm256_storeu_ps(y + ${N * 8}, vy${N}); |
| y += ${BATCH_TILE}; |
| } |
| for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) { |
| __m256 vx = _mm256_loadu_ps(x); |
| x += 8; |
| |
| const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale)); |
| |
| __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
| const __m256i vidx = _mm256_and_si256(_mm256_castps_si256(vn), vindex_mask); |
| const __m256i vl = _mm256_i32gather_epi32(xnn_table_exp2minus_k_over_16, vidx, sizeof(float)); |
| |
| const __m256i ven = _mm256_slli_epi32(_mm256_castps_si256(vn), 19); |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ven)); |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
| |
| __m256 vp = _mm256_fmadd_ps(vc3, vt, vc2); |
| vp = _mm256_mul_ps(vp, vt); |
| |
| vt = _mm256_mul_ps(vt, vs); |
| vs = _mm256_fmsub_ps(vs, valpha, valpha); |
| vp = _mm256_fmadd_ps(vp, vt, vt); |
| const __m256 ve = _mm256_fmadd_ps(vp, valpha, vs); |
| |
| vx = _mm256_mul_ps(vx, vbeta); |
| const __m256 vy = _mm256_blendv_ps(vx, ve, vx); |
| |
| _mm256_storeu_ps(y, vy); |
| y += 8; |
| } |
| if XNN_UNLIKELY(n != 0) { |
| assert(n >= 1 * sizeof(float)); |
| assert(n <= 7 * sizeof(float)); |
| const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) ¶ms->avx2_rr1_lut16_p3.mask_table[7] - n)); |
| |
| __m256 vx = _mm256_maskload_ps(x, vmask); |
| |
| const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale)); |
| |
| __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
| const __m256i vidx = _mm256_and_si256(_mm256_castps_si256(vn), vindex_mask); |
| const __m256i vl = _mm256_i32gather_epi32(xnn_table_exp2minus_k_over_16, vidx, sizeof(float)); |
| |
| const __m256i ven = _mm256_slli_epi32(_mm256_castps_si256(vn), 19); |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ven)); |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
| |
| __m256 vp = _mm256_fmadd_ps(vc3, vt, vc2); |
| vp = _mm256_mul_ps(vp, vt); |
| |
| vt = _mm256_mul_ps(vt, vs); |
| vs = _mm256_fmsub_ps(vs, valpha, valpha); |
| vp = _mm256_fmadd_ps(vp, vt, vt); |
| const __m256 ve = _mm256_fmadd_ps(vp, valpha, vs); |
| |
| vx = _mm256_mul_ps(vx, vbeta); |
| const __m256 vy = _mm256_blendv_ps(vx, ve, vx); |
| |
| __m128 vy_lo = _mm256_castps256_ps128(vy); |
| if (n & (4 * sizeof(float))) { |
| _mm_storeu_ps(y, vy_lo); |
| vy_lo = _mm256_extractf128_ps(vy, 1); |
| y += 4; |
| } |
| if (n & (2 * sizeof(float))) { |
| _mm_storel_pi((__m64*) y, vy_lo); |
| vy_lo = _mm_movehl_ps(vy_lo, vy_lo); |
| y += 2; |
| } |
| if (n & (1 * sizeof(float))) { |
| _mm_store_ss(y, vy_lo); |
| } |
| } |
| } |