| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert ELEMENTS_TILE % 8 == 0 |
| $assert ELEMENTS_TILE >= 8 |
| $SIMD_TILE = ELEMENTS_TILE // 8 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/vscaleextexp.h> |
| |
| |
| static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; |
| |
| void xnn_f32_vscaleextexp_ukernel__avx2_p5_x${ELEMENTS_TILE}( |
| size_t elements, |
| const float* x, |
| float* y, |
| float scale_value, |
| float scale_exp) |
| { |
| assert(elements % sizeof(float) == 0); |
| |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); |
| const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); |
| const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); |
| |
| // The smallest elements such that 2**elements is considered non-negligible. |
| // For smaller elements, 2**elements is replaced with zero. |
| const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); |
| |
| const __m256 vc0 = _mm256_set1_ps(1.0f); |
| const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); |
| const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); |
| const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); |
| const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); |
| const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); |
| |
| const __m256 vscalev = _mm256_set1_ps(scale_value); |
| const __m256 vscalee = _mm256_set1_ps(scale_exp); |
| |
| for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { |
| // Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time. |
| const __m256 vx0 = _mm256_loadu_ps(x); |
| $for N in range(1, SIMD_TILE): |
| const __m256 vx${N} = _mm256_loadu_ps(x + ${N * 8}); |
| x += ${ELEMENTS_TILE}; |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| $for N in range(SIMD_TILE): |
| const __m256 vn${N} = _mm256_round_ps(_mm256_mul_ps(vx${N}, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| $for N in range(SIMD_TILE): |
| __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N}); |
| |
| $for N in range(SIMD_TILE): |
| vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N}); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| $for N in range(SIMD_TILE): |
| __m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1); |
| |
| $for N in range(SIMD_TILE): |
| vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc0); |
| |
| // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where |
| // - vnX is "exponent" |
| // - vpX is "mantissa" |
| // |
| // exp2(ae) * av * exp2(be) * bv = |
| // = exp2(ae + be) * (av * bv) |
| $for N in range(SIMD_TILE): |
| __m256 vf${N} = _mm256_mul_ps(vp${N}, vscalev); |
| |
| $for N in range(SIMD_TILE): |
| __m256 ve${N} = _mm256_add_ps(vn${N}, vscalee); |
| |
| // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. |
| // This replacement is done in two steps: |
| // 1. Clamp minimum e at -127.0. |
| // 2. Map e to scale factor 0.0 when e == -127.0 |
| $for N in range(SIMD_TILE): |
| ve${N} = _mm256_max_ps(ve${N}, vmin_exponent); |
| |
| // Convert exponents into scale factors: |
| // - s = exp2(e) when e > -127.0 |
| // - s = 0.0 when e <= -127.0 |
| $for N in range(SIMD_TILE): |
| const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve${N}, vmagic_bias)), 23)); |
| |
| // Multiply "mantissa" by the scale factor. |
| $for N in range(SIMD_TILE): |
| vf${N} = _mm256_mul_ps(vf${N}, vs${N}); |
| |
| // Store ${ELEMENTS_TILE} (${SIMD_TILE}x8) outputs at a time. |
| _mm256_storeu_ps(y, vf0); |
| $for N in range(1, SIMD_TILE): |
| _mm256_storeu_ps(y + ${N * 8}, vf${N}); |
| y += ${ELEMENTS_TILE}; |
| } |
| |
| for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) { |
| // Load 8 inputs at a time. |
| const __m256 vx = _mm256_loadu_ps(x); |
| x += 8; |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); |
| vp = _mm256_fmadd_ps(vp, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| vp = _mm256_fmadd_ps(vp, vt, vc0); |
| |
| // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. |
| __m256 vf = _mm256_mul_ps(vp, vscalev); |
| __m256 ve = _mm256_add_ps(vn, vscalee); |
| |
| // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. |
| ve = _mm256_max_ps(ve, vmin_exponent); |
| |
| // Convert exponents into scale factors. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); |
| |
| // Multiply "mantissa" by the scale factor. |
| vf = _mm256_mul_ps(vf, vs); |
| |
| // Store 8 results at a time. |
| _mm256_storeu_ps(y, vf); |
| y += 8; |
| } |
| if XNN_UNLIKELY(elements != 0) { |
| assert(elements >= 1 * sizeof(float)); |
| assert(elements <= 7 * sizeof(float)); |
| const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements)); |
| |
| // Load up to 7 inputs at a time. |
| const __m256 vx = _mm256_maskload_ps(x, vmask); |
| |
| // Compute reduced argument elements := round(x / log(2)). |
| const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| |
| // Compute reduced argument t := x - elements * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); |
| vp = _mm256_fmadd_ps(vp, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| vp = _mm256_fmadd_ps(vp, vt, vc0); |
| |
| // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. |
| __m256 vf = _mm256_mul_ps(vp, vscalev); |
| __m256 ve = _mm256_add_ps(vn, vscalee); |
| |
| // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. |
| ve = _mm256_max_ps(ve, vmin_exponent); |
| |
| // Convert exponents into scale factors. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); |
| |
| // Multiply "mantissa" by the scale factor. |
| vf = _mm256_mul_ps(vf, vs); |
| |
| // Store up to 7 inputs at a time. |
| _mm256_maskstore_ps(y, vmask, vf); |
| } |
| _mm256_zeroupper(); |
| } |