blob: 675356dc9976829819cddb0041562bd4ba5095f5 [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <math.h>
#include <xnnpack/common.h>
#include <xnnpack/math.h>
#include <xnnpack/vunary.h>
void xnn_f32_vsigmoid_ukernel__scalar_rr2_p5_div_x${BATCH_TILE}(
size_t n,
const float* x,
float* y,
const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(n % sizeof(float) == 0);
const float vmagic_bias = params->scalar_rr2_p5.magic_bias;
const float vminus_log2e = params->scalar_rr2_p5.minus_log2e;
const float vln2_hi = params->scalar_rr2_p5.ln2_hi;
const float vln2_lo = params->scalar_rr2_p5.ln2_lo;
const float vc5 = params->scalar_rr2_p5.c5;
const float vc4 = params->scalar_rr2_p5.c4;
const float vc3 = params->scalar_rr2_p5.c3;
const float vc2 = params->scalar_rr2_p5.c2;
const float vc1 = params->scalar_rr2_p5.c1;
const float vone = params->scalar_rr2_p5.one;
const float vdenorm_cutoff = params->scalar_rr2_p5.denorm_cutoff;
$if BATCH_TILE > 1:
for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
$for N in range(BATCH_TILE):
const float vx${N} = x[${N}];
x += ${BATCH_TILE};
$for N in range(BATCH_TILE):
const float vz${N} = fabsf(vx${N});
$for N in range(BATCH_TILE):
float vn${N} = vz${N} * vminus_log2e + vmagic_bias;
$for N in range(BATCH_TILE):
const float vs${N} = uint32_as_float(float_as_uint32(vn${N}) << 23);
$for N in range(BATCH_TILE):
vn${N} -= vmagic_bias;
$for N in range(BATCH_TILE):
float vt${N} = vn${N} * vln2_hi + vz${N};
$for N in range(BATCH_TILE):
vt${N} = vn${N} * vln2_lo + vt${N};
$for N in range(BATCH_TILE):
float vp${N} = vt${N} * vc5 + vc4;
$for N in range(BATCH_TILE):
vp${N} = vt${N} * vp${N} + vc3;
$for N in range(BATCH_TILE):
vp${N} = vt${N} * vp${N} + vc2;
$for N in range(BATCH_TILE):
vp${N} = vt${N} * vp${N} + vc1;
$for N in range(BATCH_TILE):
vt${N} *= vs${N};
$for N in range(BATCH_TILE):
const float ve${N} = vt${N} * vp${N} + vs${N};
$for N in range(BATCH_TILE):
const float vd${N} = ve${N} + vone;
$for N in range(BATCH_TILE):
float vf${N} = ve${N} / vd${N};
$for N in range(BATCH_TILE):
if XNN_UNPREDICTABLE(vz${N} > vdenorm_cutoff) {
vf${N} = 0.0f;
}
$for N in range(BATCH_TILE):
if XNN_UNPREDICTABLE(vx${N} > 0.0f) {
vf${N} = vone - vf${N};
}
$for N in range(BATCH_TILE):
y[${N}] = vf${N};
y += ${BATCH_TILE};
}
$if BATCH_TILE == 1:
do {
const float vx = *x++;
const float vz = fabsf(vx);
float vn = vz * vminus_log2e + vmagic_bias;
const float vs = uint32_as_float(float_as_uint32(vn) << 23);
vn -= vmagic_bias;
float vt = vn * vln2_hi + vz;
vt = vn * vln2_lo + vt;
float vp = vt * vc5 + vc4;
vp = vt * vp + vc3;
vp = vt * vp + vc2;
vp = vt * vp + vc1;
vt *= vs;
const float ve = vt * vp + vs;
const float vd = ve + vone;
float vf = ve / vd;
if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
vf = 0.0f;
}
if XNN_UNPREDICTABLE(vx > 0.0f) {
vf = vone - vf;
}
*y++ = vf;
n -= sizeof(float);
} while (n != 0);
$elif BATCH_TILE == 2:
if XNN_UNLIKELY(n != 0) {
const float vx = *x;
const float vz = fabsf(vx);
float vn = vz * vminus_log2e + vmagic_bias;
const float vs = uint32_as_float(float_as_uint32(vn) << 23);
vn -= vmagic_bias;
float vt = vn * vln2_hi + vz;
vt = vn * vln2_lo + vt;
float vp = vt * vc5 + vc4;
vp = vt * vp + vc3;
vp = vt * vp + vc2;
vp = vt * vp + vc1;
vt *= vs;
const float ve = vt * vp + vs;
const float vd = ve + vone;
float vf = ve / vd;
if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
vf = 0.0f;
}
if XNN_UNPREDICTABLE(vx > 0.0f) {
vf = vone - vf;
}
*y = vf;
}
$else:
if XNN_UNLIKELY(n != 0) {
do {
const float vx = *x++;
const float vz = fabsf(vx);
float vn = vz * vminus_log2e + vmagic_bias;
const float vs = uint32_as_float(float_as_uint32(vn) << 23);
vn -= vmagic_bias;
float vt = vn * vln2_hi + vz;
vt = vn * vln2_lo + vt;
float vp = vt * vc5 + vc4;
vp = vt * vp + vc3;
vp = vt * vp + vc2;
vp = vt * vp + vc1;
vt *= vs;
const float ve = vt * vp + vs;
const float vd = ve + vone;
float vf = ve / vd;
if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
vf = 0.0f;
}
if XNN_UNPREDICTABLE(vx > 0.0f) {
vf = vone - vf;
}
*y++ = vf;
n -= sizeof(float);
} while (n != 0);
}
}