blob: 8d6c12cf153cf459a99f3037dce8f216abb25a30 [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <arm_neon.h>
#include <xnnpack/math-stubs.h>
void xnn_math_f16_exp__neonfp16arith_rr2_p3(
size_t n,
const void* input,
void* output)
{
assert(n % (8 * sizeof(__fp16)) == 0);
const float16x8_t vmagic_bias = vmovq_n_f16(0x1.800p+10f);
// The smallest x for which exph(x) is non-zero.
const float16x8_t vzero_cutoff = vmovq_n_f16(-0x1.154p+4f);
// The largest x for which exph(x) is finite.
const float16x8_t vinf_cutoff = vmovq_n_f16(0x1.63Cp+3f);
const float16x8_t vlog2e = vmovq_n_f16(0x1.714p+0f);
const float16x8_t vminus_ln2_hi = vmovq_n_f16(-0x1.630p-1f);
const float16x8_t vminus_ln2_lo = vmovq_n_f16(0x1.BD0p-13f);
const float16x8_t vplus_inf = vmovq_n_f16(INFINITY);
const float16x8_t vone = vmovq_n_f16(1.0f);
const float16x8_t vc2 = vmovq_n_f16(0x1.020p-1f);
const float16x8_t vc3 = vmovq_n_f16(0x1.558p-3f);
const int16x8_t vmin_exponent = vmovq_n_s16(INT16_C(0xC800));
const int16x8_t vmax_exponent = vreinterpretq_s16_f16(vone);
const int16x8_t vdefault_exponent = vmax_exponent;
const __fp16* i = (const __fp16*) input;
__fp16* o = (__fp16*) output;
for (; n != 0; n -= 8 * sizeof(__fp16)) {
const float16x8_t vx = vld1q_f16(i); i += 8;
// Compute reduced argument n := round(x / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
// large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x / log(2)| <= 2**9, i.e.
// |x| <= 0x1.630p+8 = 355), but that's ok, because inputs outside of [-17.328125, 11.1171875] underflow or overflow
// exph(x) anyway. We fixup the result for such inputs at the very end of the algorithm.
float16x8_t vn = vfmaq_f16(vmagic_bias, vx, vlog2e);
// Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n
// for inputs which don't cause overflow, i.e. -17.328125 <= x <= 11.1171875, and -25 <= n <= 16 accordingly.
// We need to use two numbers rather than one because a normalized half-precision exponent must be in [-14, 15]
// range, which is insufficient to cover [-25, 16] range of n.
// - When n is within [-14, 15], sn == 2**n and so == 1.0.
// - When n < -14, sn == 2**(-14) and so == 2**(n + 14).
// - When n > 15, sn == 2**15 and so == 2**(n - 15).
int16x8_t veo = vshlq_n_s16(vreinterpretq_s16_f16(vn), 10);
int16x8_t ven = vmaxq_s16(veo, vmin_exponent);
ven = vminq_s16(ven, vmax_exponent);
veo = vsubq_s16(veo, ven);
const float16x8_t vsn = vreinterpretq_f16_s16(vaddq_s16(ven, vdefault_exponent));
const float16x8_t vso = vreinterpretq_f16_s16(vaddq_s16(veo, vdefault_exponent));
// Subtract the large number back to get final n := round(x / log(2)).
vn = vsubq_f16(vn, vmagic_bias);
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float16x8_t vt = vfmaq_f16(vx, vn, vminus_ln2_hi);
vt = vfmaq_f16(vt, vn, vminus_ln2_lo);
// Compute degree-3 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
float16x8_t vp = vfmaq_f16(vc2, vc3, vt);
vp = vfmaq_f16(vone, vp, vt);
// Reconstruct the final f value:
// f = so * sn * (1 + t * (1 + t * (c2 + t * c3)))
// = sn * (so + (t * so) * (1 + t * (c2 + t * c3)))
// = sn * (so + (t * so) * p)
vt = vmulq_f16(vt, vso);
float16x8_t vf = vmulq_f16(vsn, vfmaq_f16(vso, vt, vp));
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = vreinterpretq_f16_u16(vbicq_u16(vreinterpretq_u16_f16(vf), vcltq_f16(vx, vzero_cutoff)));
// For inputs above inf cutoff, replace output with +inf.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = vbslq_f16(vcgtq_f16(vx, vinf_cutoff), vplus_inf, vf);
vst1q_f16(o, vf); o += 8;
}
}