| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stddef.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_exp__avx_rr2_p5( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (8 * sizeof(float)) == 0); |
| |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p+23f); |
| // The smallest x for which expf(x) is non-zero. |
| const __m256 vzero_cutoff = _mm256_set1_ps(-0x1.9FE368p+6f); |
| // The largest x for which expf(x) is finite. |
| const __m256 vinf_cutoff = _mm256_set1_ps(0x1.62E42Ep+6f); |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); |
| // Last 8 bits are zeroes |
| const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E400p-1f); |
| const __m256 vminus_ln2_lo = _mm256_set1_ps(-0x1.7F7D1Cp-20f); |
| const __m256 vplus_inf = _mm256_set1_ps(INFINITY); |
| |
| const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); |
| const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); |
| const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); |
| const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); |
| const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); |
| |
| const __m128i vmin_exponent = _mm_set1_epi32(0xC1000000); |
| const __m128i vmax_exponent = _mm_set1_epi32(0x3F800000); |
| const __m128i vdefault_exponent = vmax_exponent; |
| |
| for (; n != 0; n -= 8 * sizeof(float)) { |
| const __m256 vx = _mm256_loadu_ps(input); |
| |
| // Compute reduced argument n := round(x / log(2)). |
| // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result |
| // to an integer, then subtracing the large number back. The trick with adding large number is valid only within |
| // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-103.97207, 88.72283] underflow or |
| // overflow expf(x) anyway. We fixup the result for such inputs at the very end of the algorithm. |
| __m256 vn = _mm256_add_ps(_mm256_mul_ps(vx, vlog2e), vmagic_bias); |
| |
| // Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n |
| // for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly. |
| // We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126] |
| // range, which is insufficient to cover [-150, 128] range of n. |
| // - When n is within [-127, 126], sn == 2**n and so == 1.0. |
| // - When n < -127, sn == 2**(-127) and so == 2**(n + 127). |
| // - When n > 126, sn == 2**126 and so == 2**(n - 126). |
| __m128i veo_lo = _mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23); |
| __m128i veo_hi = _mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23); |
| __m128i ven_lo = _mm_max_epi16(veo_lo, vmin_exponent); |
| __m128i ven_hi = _mm_max_epi16(veo_hi, vmin_exponent); |
| ven_lo = _mm_min_epi16(ven_lo, vmax_exponent); |
| ven_hi = _mm_min_epi16(ven_hi, vmax_exponent); |
| veo_lo = _mm_sub_epi32(veo_lo, ven_lo); |
| veo_hi = _mm_sub_epi32(veo_hi, ven_hi); |
| const __m128 vsn_lo = _mm_castsi128_ps(_mm_add_epi32(ven_lo, vdefault_exponent)); |
| const __m128 vsn_hi = _mm_castsi128_ps(_mm_add_epi32(ven_hi, vdefault_exponent)); |
| const __m128 vso_lo = _mm_castsi128_ps(_mm_add_epi32(veo_lo, vdefault_exponent)); |
| const __m128 vso_hi = _mm_castsi128_ps(_mm_add_epi32(veo_hi, vdefault_exponent)); |
| const __m256 vsn = _mm256_insertf128_ps(_mm256_castps128_ps256(vsn_lo), vsn_hi, 1); |
| const __m256 vso = _mm256_insertf128_ps(_mm256_castps128_ps256(vso_lo), vso_hi, 1); |
| |
| // Subtract the large number back to get final n := round(x / log(2)). |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vx); |
| vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); |
| vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); |
| vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); |
| vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); |
| |
| // Reconstruct the final f value: |
| // f = so * sn * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) |
| // = sn * (so + (t * so) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))) |
| // = sn * (so + (t * so) * p) |
| vt = _mm256_mul_ps(vt, vso); |
| __m256 vf = _mm256_mul_ps(vsn, _mm256_add_ps(_mm256_mul_ps(vt, vp), vso)); |
| |
| // For inputs below zero cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vzero_cutoff, _CMP_LT_OS), vf); |
| // For inputs above inf cutoff, replace output with +inf. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm256_blendv_ps(vf, vplus_inf, _mm256_cmp_ps(vx, vinf_cutoff, _CMP_GT_OS)); |
| _mm256_storeu_ps(output, vf); |
| |
| input += 8; |
| output += 8; |
| } |
| } |