blob: 707c5c152ecb7a25013f4578e708fd9b57f87e5b [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <immintrin.h>
#include <xnnpack/math-stubs.h>
void xnn_math_f32_exp__avx2_rr2_p5(
size_t n,
const float* input,
float* output)
{
assert(n % (8 * sizeof(float)) == 0);
const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p+23f);
// The smallest x for which expf(x) is non-zero.
const __m256 vzero_cutoff = _mm256_set1_ps(-0x1.9FE368p+6f);
// The largest x for which expf(x) is finite.
const __m256 vinf_cutoff = _mm256_set1_ps(0x1.62E42Ep+6f);
const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
const __m256 vplus_inf = _mm256_set1_ps(INFINITY);
const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
const __m256i vmin_exponent = _mm256_set1_epi32(0xC1000000);
const __m256i vmax_exponent = _mm256_set1_epi32(0x3F800000);
const __m256i vdefault_exponent = vmax_exponent;
for (; n != 0; n -= 8 * sizeof(float)) {
const __m256 vx = _mm256_loadu_ps(input);
// Compute reduced argument n := round(x / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
// large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but that's ok, because
// inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup the result for such
// inputs at the very end of the algorithm.
__m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
// Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n
// for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly.
// We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126]
// range, which is insufficient to cover [-150, 128] range of n.
// - When n is within [-127, 126], sn == 2**n and so == 1.0.
// - When n < -127, sn == 2**(-127) and so == 2**(n + 127).
// - When n > 126, sn == 2**126 and so == 2**(n - 126).
__m256i veo = _mm256_slli_epi32(_mm256_castps_si256(vn), 23);
__m256i ven = _mm256_max_epi32(veo, vmin_exponent);
ven = _mm256_min_epi32(ven, vmax_exponent);
veo = _mm256_sub_epi32(veo, ven);
const __m256 vsn = _mm256_castsi256_ps(_mm256_add_epi32(ven, vdefault_exponent));
const __m256 vso = _mm256_castsi256_ps(_mm256_add_epi32(veo, vdefault_exponent));
// Subtract the large number back to get final n := round(x / log(2)).
vn = _mm256_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
// Reconstruct the final f value:
// f = so * sn * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = sn * (so + (t * so) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))))
// = sn * (so + (t * so) * p)
vt = _mm256_mul_ps(vt, vso);
__m256 vf = _mm256_mul_ps(vsn, _mm256_fmadd_ps(vt, vp, vso));
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vzero_cutoff, _CMP_LT_OS), vf);
// For inputs above inf cutoff, replace output with +inf.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm256_blendv_ps(vf, vplus_inf, _mm256_cmp_ps(vx, vinf_cutoff, _CMP_GT_OS));
_mm256_storeu_ps(output, vf);
input += 8;
output += 8;
}
}