blob: 7d09f60ec44c0d9a08a367ddaa5c34319fb1db14 [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <immintrin.h>
#include <xnnpack/math-stubs.h>
void xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2(
size_t n,
const float* input,
float* output)
{
assert(n % (16 * sizeof(float)) == 0);
const __m512 vmagic_bias = _mm512_set1_ps(0x1.800000p23f);
const __m512 vlog2e_x32 = _mm512_set1_ps(0x1.715476p5f);
// The smallest x for which expf(x) is non-zero.
const __m512 vzero_cutoff = _mm512_set1_ps(-0x1.9FE368p6f);
// The largest x for which expf(x) is finite.
const __m512 vinf_cutoff = _mm512_set1_ps(0x1.62E42Ep6f);
const __m512 vminus_ln2_o32_hi = _mm512_set1_ps(-0x1.62e43p-6f);
const __m512 vminus_ln2_o32_lo = _mm512_set1_ps(0x1.05c61p-34f);
const __m512 vplus_inf = _mm512_set1_ps(INFINITY);
const __m512 vc1 = _mm512_set1_ps(0x1.0000F6p-0f);
const __m512 vc2 = _mm512_set1_ps(0x1.000000p-1f);
const __m512 vtable_hi = _mm512_set_ps(
0x1.F50766p+0f, 0x1.EA4AFAp+0f, 0x1.DFC974p+0f, 0x1.D5818Ep+0f,
0x1.CB720Ep+0f, 0x1.C199BEp+0f, 0x1.B7F770p+0f, 0x1.AE89FAp+0f,
0x1.A5503Cp+0f, 0x1.9C4918p+0f, 0x1.93737Cp+0f, 0x1.8ACE54p+0f,
0x1.82589Ap+0f, 0x1.7A1148p+0f, 0x1.71F75Ep+0f, 0x1.6A09E6p+0f);
const __m512 vtable_lo = _mm512_set_ps(
0x1.6247ECp+0f, 0x1.5AB07Ep+0f, 0x1.5342B6p+0f, 0x1.4BFDAEp+0f,
0x1.44E086p+0f, 0x1.3DEA64p+0f, 0x1.371A74p+0f, 0x1.306FE0p+0f,
0x1.29E9E0p+0f, 0x1.2387A6p+0f, 0x1.1D4874p+0f, 0x1.172B84p+0f,
0x1.11301Ep+0f, 0x1.0B5586p+0f, 0x1.059B0Ep+0f, 0x1.000000p+0f);
const __m512i vmin_exponent = _mm512_set1_epi32(0xC1000000);
const __m512i vmax_exponent = _mm512_set1_epi32(0x3F800000);
const __m512i vdefault_exponent = vmax_exponent;
const __m512i vmantissa_mask = _mm512_set1_epi32(0x007FFFE0);
for (; n != 0; n -= 16 * sizeof(float)) {
const __m512 vx = _mm512_loadu_ps(input);
// Compute reduced argument n := round(x * 32 / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
// large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but that's ok, because
// inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup the result for such
// inputs at the very end of the algorithm.
__m512 vn = _mm512_fmadd_ps(vx, vlog2e_x32, vmagic_bias);
// Detect underflow and overflow of expf(x) for further special handling.
const __mmask16 vinvof = _mm512_cmp_ps_mask(vx, vinf_cutoff, _CMP_NGT_UQ);
const __mmask16 vinvuf = _mm512_cmp_ps_mask(vx, vzero_cutoff, _CMP_NLT_UQ);
// Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n
// for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly.
// We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126]
// range, which is insufficient to cover [-150, 128] range of n.
// - When n is within [-127, 126], sn == 2**n and so == 1.0.
// - When n < -127, sn == 2**(-127) and so == 2**(n + 127).
// - When n > 126, sn == 2**126 and so == 2**(n - 126).
__m512i veo = _mm512_slli_epi32(_mm512_and_si512(_mm512_castps_si512(vn), vmantissa_mask), 18);
__m512i ven = _mm512_max_epi32(veo, vmin_exponent);
ven = _mm512_min_epi32(ven, vmax_exponent);
veo = _mm512_sub_epi32(veo, ven);
const __m512 vsn = _mm512_castsi512_ps(_mm512_add_epi32(ven, vdefault_exponent));
const __m512 vso = _mm512_castsi512_ps(_mm512_maskz_add_epi32(vinvuf, veo, vdefault_exponent));
// Use the low 5 bits of n (as integer) for table lookup.
const __m512 vl = _mm512_permutex2var_ps(vtable_lo, _mm512_castps_si512(vn), vtable_hi);
// Subtract the large number back to get final n := round(x * 32 / log(2)).
vn = _mm512_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := x - n * log(2) / 32.
// Use Cody-Waite range reduction method (note two constants to represent log(2) / 32) to improve accuracy.
__m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_o32_hi, vx);
vt = _mm512_fmadd_ps(vn, vminus_ln2_o32_lo, vt);
// Compute degree-2 polynomial approximation for exp(t) on [-log(2)/64, log(2)/64].
__m512 vp = _mm512_fmadd_ps(vt, vc2, vc1);
// Reconstruct the final f value:
// f = so * sn * l * (1 + t * (c1 + t * c2))
// = so * sn * (l + l * t * (c1 + t * c2))
// = so * sn * (l + (l * t) * p)
vt = _mm512_mul_ps(vt, vl);
__m512 vf = _mm512_fmadd_ps(vt, vp, vl);
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm512_maskz_mul_ps(vinvuf, vf, vsn);
// For inputs above inf cutoff, replace output with +inf.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm512_mask_mul_ps(vplus_inf, vinvof, vso, vf);
_mm512_storeu_ps(output, vf);
input += 16;
output += 16;
}
}