| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_exp__avx512f_rr2_p5_scalef( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (16 * sizeof(float)) == 0); |
| |
| const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); |
| |
| // The smallest x for which expf(x) is non-zero. |
| const __m512 vzero_cutoff = _mm512_set1_ps(-0x1.9FE368p+6f); |
| // The largest x for which expf(x) is finite. |
| const __m512 vinf_cutoff = _mm512_set1_ps(0x1.62E42Ep+6f); |
| |
| const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); |
| const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); |
| |
| const __m512 vc0 = _mm512_set1_ps(1.0f); |
| const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); |
| const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); |
| const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); |
| const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); |
| const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); |
| |
| for (; n != 0; n -= 16 * sizeof(float)) { |
| const __m512 vx = _mm512_loadu_ps(input); |
| |
| // Compute reduced argument n := round(x / log(2)). |
| const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); |
| |
| // Detect underflow and overflow of expf(x) for further special handling. |
| // For large positive or negative inputs the range reduction may produce degenerate reduced arguments: |
| // - Reduced argument t can fall outside of [-log(2)/2, log(2)/2] range, leading to polynomial approximation p |
| // being negative, and exp(n) * p being either -0.0f (in underflow case) or -inf (in overflow case) instead of |
| // +0.0f and +inf respectively. |
| // - Reduced argument n can overflow and become +inf or -inf, and leading to NaN in reduced argument t. |
| const __mmask16 vinvof = _mm512_cmp_ps_mask(vx, vinf_cutoff, _CMP_NGT_UQ); |
| const __mmask16 vinvuf = _mm512_cmp_ps_mask(vx, vzero_cutoff, _CMP_NLT_UQ); |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| // Use masking to explicitly zero the result for large positive inputs, to avoid propagating NaN in reduced |
| // argument t into further computations. Zeroing the reduced argument t would instead result in polynomial |
| // approximation being 1.0f, which correctly overflows to +inf when scaled by n = +inf. |
| __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm512_maskz_fmadd_ps(vinvof, vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); |
| vp = _mm512_fmadd_ps(vp, vt, vc3); |
| vp = _mm512_fmadd_ps(vp, vt, vc2); |
| vp = _mm512_fmadd_ps(vp, vt, vc1); |
| vp = _mm512_fmadd_ps(vp, vt, vc0); |
| |
| // Reconstruct the final value as f = exp2(n) * p. |
| // Use masking to explicitly zero (set to +0.0f) the result for large negative inputs, because for some of these |
| // inputs the polynomial approximation p is negative and thus exp2(n) * p == -0.0f. |
| const __m512 vf = _mm512_maskz_scalef_ps(vinvuf, vp, vn); |
| _mm512_storeu_ps(output, vf); |
| |
| input += 16; |
| output += 16; |
| } |
| } |