blob: f11c9b5a1aee3e7e4199010b1f6d108c3d510d37 [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <immintrin.h>
#include <xnnpack/math-stubs.h>
void xnn_math_f16_expm1minus__avx2_rr1_p3(
size_t n,
const void* input,
void* output)
{
assert(n % (8 * sizeof(uint16_t)) == 0);
// The largest x for which expm1f(x) is saturated at -1.0f.
const __m256 vsat_cutoff = _mm256_set1_ps(-0x1.0A4000p+3f);
// Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22.
const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f);
const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
// Coefficient of polynomial approximation
// exp(t) - 1 ~ t * (1 + t * (c2 + t * c3))
// on [-log(2)/2, log(2)/2]
const __m256 vc3 = _mm256_set1_ps(0x1.5554DCp-3f);
const __m256 vc2 = _mm256_set1_ps(0x1.01EBB2p-1f);
const __m256 vc1 = _mm256_set1_ps(0x1.0002F2p0f);
const __m256 vone = _mm256_set1_ps(1.0f);
const uint16_t* i = (const uint16_t*) input;
uint16_t* o = (uint16_t*) output;
for (; n != 0; n -= 8 * sizeof(uint16_t)) {
__m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
i += 8;
// The function saturates at -1 for large negative inputs: expm1h(x) == -1.0h for x <= sat_cutoff ~= -8.3203125.
// To guarantee this behaviour, we clip input at sat_cutoff, and leverage the fact that for our implementation
// expm1m(sat_cutoff) == -1.0f. NaN inputs are passed unchanged.
vx = _mm256_max_ps(vx, vsat_cutoff);
// Compute reduced argument n := round(x / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing
// the large number back. The addition is combined with multiplication by log2e into a single FMA instruction. The
// trick with adding large number is valid only within certain bounds (|x / log(2)| <= 2**9, i.e.
// |x| <= 0x1.630p+8 = 355.0), but that is acceptable, because inputs x are restricted to [-8.3203125, 0].
// Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
__m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**n for valid inputs, i.e.
// -8.3203125 <= x <= 0.0, and -12 <= n <= 0 accordingly.
// For NaN inputs, s would have zero mantissa and can have arbitrary sign and exponent, depending on the input
// NaN payload. In these cases, n and t are NaNs with the same payload as input while s is non-NaN, and thus
// input payload would be propagated in all computations.
__m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
// Subtract the large number back to get final n := round(x / log(2)).
vn = _mm256_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := x - n * log(2).
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx);
// Compute degree-3 polynomial approximation for exp(t) - 1 on [-log(2)/2, log(2)/2].
// P(t) = t * (c1 + t * (c2 + t * c3))
// = t * p
__m256 vp = _mm256_fmadd_ps(vc3, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
// Reconstruct the exp(x) - 1 value:
// exp(x) - 1 = s * (1 + t * p) - 1
// = (s - 1) + (s * t) * p
// = (t * s) * p + (s - 1)
vt = _mm256_mul_ps(vt, vs);
vs = _mm256_sub_ps(vs, vone);
const __m256 vf = _mm256_fmadd_ps(vp, vt, vs);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_NO_EXC));
o += 8;
}
}