| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f16_expm1minus__avx2_rr1_p3( |
| size_t n, |
| const void* input, |
| void* output) |
| { |
| assert(n % (8 * sizeof(uint16_t)) == 0); |
| |
| // The largest x for which expm1f(x) is saturated at -1.0f. |
| const __m256 vsat_cutoff = _mm256_set1_ps(-0x1.0A4000p+3f); |
| // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f); |
| const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f); |
| // Coefficient of polynomial approximation |
| // exp(t) - 1 ~ t * (1 + t * (c2 + t * c3)) |
| // on [-log(2)/2, log(2)/2] |
| const __m256 vc3 = _mm256_set1_ps(0x1.5554DCp-3f); |
| const __m256 vc2 = _mm256_set1_ps(0x1.01EBB2p-1f); |
| const __m256 vc1 = _mm256_set1_ps(0x1.0002F2p0f); |
| const __m256 vone = _mm256_set1_ps(1.0f); |
| |
| const uint16_t* i = (const uint16_t*) input; |
| uint16_t* o = (uint16_t*) output; |
| for (; n != 0; n -= 8 * sizeof(uint16_t)) { |
| __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
| i += 8; |
| |
| // The function saturates at -1 for large negative inputs: expm1h(x) == -1.0h for x <= sat_cutoff ~= -8.3203125. |
| // To guarantee this behaviour, we clip input at sat_cutoff, and leverage the fact that for our implementation |
| // expm1m(sat_cutoff) == -1.0f. NaN inputs are passed unchanged. |
| vx = _mm256_max_ps(vx, vsat_cutoff); |
| |
| // Compute reduced argument n := round(x / log(2)). |
| // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing |
| // the large number back. The addition is combined with multiplication by log2e into a single FMA instruction. The |
| // trick with adding large number is valid only within certain bounds (|x / log(2)| <= 2**9, i.e. |
| // |x| <= 0x1.630p+8 = 355.0), but that is acceptable, because inputs x are restricted to [-8.3203125, 0]. |
| // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range. |
| __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s == 2**n for valid inputs, i.e. |
| // -8.3203125 <= x <= 0.0, and -12 <= n <= 0 accordingly. |
| // For NaN inputs, s would have zero mantissa and can have arbitrary sign and exponent, depending on the input |
| // NaN payload. In these cases, n and t are NaNs with the same payload as input while s is non-NaN, and thus |
| // input payload would be propagated in all computations. |
| __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
| |
| // Subtract the large number back to get final n := round(x / log(2)). |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - n * log(2). |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); |
| |
| // Compute degree-3 polynomial approximation for exp(t) - 1 on [-log(2)/2, log(2)/2]. |
| // P(t) = t * (c1 + t * (c2 + t * c3)) |
| // = t * p |
| __m256 vp = _mm256_fmadd_ps(vc3, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| |
| // Reconstruct the exp(x) - 1 value: |
| // exp(x) - 1 = s * (1 + t * p) - 1 |
| // = (s - 1) + (s * t) * p |
| // = (t * s) * p + (s - 1) |
| vt = _mm256_mul_ps(vt, vs); |
| vs = _mm256_sub_ps(vs, vone); |
| const __m256 vf = _mm256_fmadd_ps(vp, vt, vs); |
| |
| _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_NO_EXC)); |
| o += 8; |
| } |
| } |