blob: 1a35145677b9ff3b11a67f44bf869939240cd9a9 [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <arm_neon.h>
#include <xnnpack/math-stubs.h>
void xnn_math_f16_expm1minus__neonfp16arith_rr2_p3(
size_t n,
const void* input,
void* output)
{
assert(n % (8 * sizeof(__fp16)) == 0);
// The largest x for which expm1f(x) is saturated at -1.0f.
const float16x8_t vsat_cutoff = vmovq_n_f16(-0x1.0A4p+3f);
// Large number such that ulp(magic bias) == 1 and magic bias === 15 mod 2**9.
const float16x8_t vmagic_bias = vmovq_n_f16(0x1.83Cp+10f);
const float16x8_t vlog2e = vmovq_n_f16(0x1.714p+0f);
const float16x8_t vminus_ln2_hi = vmovq_n_f16(-0x1.630p-1f);
const float16x8_t vminus_ln2_lo = vmovq_n_f16(0x1.BD0p-13f);
// Coefficient of polynomial approximation
// exp(t) - 1 ~ t * (1 + t * (c2 + t * c3))
// on [-log(2)/2, log(2)/2]
const float16x8_t vc3 = vmovq_n_f16(0x1.56Cp-3f);
const float16x8_t vc2 = vmovq_n_f16(0x1.020p-1f);
const float16x8_t vone = vmovq_n_f16(1.0f);
const __fp16* i = (const __fp16*) input;
__fp16* o = (__fp16*) output;
for (; n != 0; n -= 8 * sizeof(__fp16)) {
float16x8_t vx = vld1q_f16(i); i += 8;
// The function saturates at -1 for large negative inputs: expm1h(x) == -1.0h for x <= sat_cutoff ~= -8.3203125.
// To guarantee this behaviour, we clip input at sat_cutoff, and leverage the fact that for our implementation
// expm1m(sat_cutoff) == -1.0f. NaN inputs are passed unchanged.
vx = vmaxq_f16(vx, vsat_cutoff);
// Compute reduced argument n := round(x / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing
// the large number back. The addition is combined with multiplication by log2e into a single FMA instruction. The
// trick with adding large number is valid only within certain bounds (|x / log(2)| <= 2**9, i.e.
// |x| <= 0x1.630p+8 = 355.0), but that is acceptable, because inputs x are restricted to [-8.3203125, 0].
// Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
float16x8_t vn = vfmaq_f16(vmagic_bias, vx, vlog2e);
// Create a floating-point number s (scale) such that s == 2**n for valid inputs, i.e.
// -8.3203125 <= x <= 0.0, and -12 <= n <= 0 accordingly.
// For NaN inputs, s would have zero mantissa and can have arbitrary sign and exponent, depending on the input
// NaN payload. In these cases, n and t are NaNs with the same payload as input while s is non-NaN, and thus
// input payload would be propagated in all computations.
const float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10));
// Subtract the large number back to get final n := round(x / log(2)).
vn = vsubq_f16(vn, vmagic_bias);
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float16x8_t vt = vfmaq_f16(vx, vn, vminus_ln2_hi);
vt = vfmaq_f16(vt, vn, vminus_ln2_lo);
// Compute degree-3 polynomial approximation for exp(t) - 1 on [-log(2)/2, log(2)/2].
// P(t) = t * (1 + t * (c2 + t * c3))
// = t + t * (t * (c2 + t * c3)) = t + t * p
float16x8_t vp = vfmaq_f16(vc2, vc3, vt);
vp = vmulq_f16(vp, vt);
// Reconstruct the exp(x) - 1 value:
// exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * c3))) - 1
// = (s - 1) + s * (t + t * p)
// = ((t * s) + (t * s) * p) + (s - 1)
vt = vmulq_f16(vt, vs);
const float16x8_t vsm1 = vsubq_f16(vs, vone);
vp = vfmaq_f16(vt, vp, vt);
const float16x8_t vf = vaddq_f16(vp, vsm1);
vst1q_f16(o, vf); o += 8;
}
}