| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_expm1minus__avx_rr2_p6( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (8 * sizeof(float)) == 0); |
| |
| // The largest x for which expm1f(x) is saturated at -1.0f. |
| const __m256 vsat_cutoff = _mm256_set1_ps(-0x1.154246p+4f); |
| // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); |
| // Last 5 bits are zeroes |
| const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E440p-1f); |
| const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.0105C6p-21f); |
| // Coefficient of polynomial approximation |
| // exp(t) - 1 ~ t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6))))) |
| // on [-log(2)/2, log(2)/2] |
| const __m256 vc6 = _mm256_set1_ps(0x1.6b7338p-10f); |
| const __m256 vc5 = _mm256_set1_ps(0x1.12278Ep-7f); |
| const __m256 vc4 = _mm256_set1_ps(0x1.555716p-5f); |
| const __m256 vc3 = _mm256_set1_ps(0x1.5554B0p-3f); |
| const __m256 vc2 = _mm256_set1_ps(0x1.FFFFFEp-2f); |
| const __m256 vone = _mm256_set1_ps(1.0f); |
| |
| for (; n != 0; n -= 8 * sizeof(float)) { |
| __m256 vx = _mm256_loadu_ps(input); |
| |
| // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680. |
| // To guarantee this behaviour, we clip input at sat_cutoff, and leverage the fact that for our implementation |
| // expm1f(sat_cutoff) == -1.0f. The order of operands in the [V]MAXPS instruction matters: it ensures that NaN |
| // inputs are passed unchanged. |
| vx = _mm256_max_ps(vsat_cutoff, vx); |
| |
| // Compute reduced argument n := round(x / log(2)). |
| // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing |
| // the large number back. The trick with adding large number is valid only within certain bounds |
| // (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x are |
| // restricted to [-17.328680, 0]. |
| // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range. |
| __m256 vn = _mm256_add_ps(_mm256_mul_ps(vx, vlog2e), vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s == 2**n for valid inputs, i.e. |
| // -17.328680 <= x <= 0.0, and -25 <= n <= 0 accordingly. |
| // For NaN inputs, s would have zero mantissa and can have arbitrary sign and exponent, depending on the input |
| // NaN payload. In these cases, n and t are NaNs with the same payload as input while s is non-NaN, and thus |
| // input payload would be propagated in all computations. |
| const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); |
| const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); |
| const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); |
| |
| // Subtract the large number back to get final n := round(x / log(2)). |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vx); |
| vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); |
| |
| // Compute degree-6 polynomial approximation for exp(t) - 1 on [-log(2)/2, log(2)/2]. |
| // P(t) = t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6))))) |
| // = t + t * (t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6))))) = t + t * p |
| __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc6, vt), vc5); |
| vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc4); |
| vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); |
| vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); |
| vp = _mm256_mul_ps(vp, vt); |
| |
| // Reconstruct the exp(x) - 1 value: |
| // exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))) - 1 |
| // = (s - 1) + s * (t + t * p) |
| // = ((t * s) + (t * s) * p) + (s - 1) |
| vt = _mm256_mul_ps(vt, vs); |
| const __m256 vsm1 = _mm256_sub_ps(vs, vone); |
| vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vt); |
| const __m256 vf = _mm256_add_ps(vp, vsm1); |
| |
| _mm256_storeu_ps(output, vf); |
| |
| input += 8; |
| output += 8; |
| } |
| } |