| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_expm1minus__avx2_rr1_lut8_p4_perm( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (8 * sizeof(float)) == 0); |
| |
| // The largest x for which expm1f(x) is saturated at -1.0f. |
| const __m256 vsat_cutoff = _mm256_set1_ps(-0x1.154246p+4f); |
| // Large number such that ulp(magic bias) == exp2(-3) |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p20f); |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); |
| // Table of exp2(k / 8) values decremented (as integer) by (k << 20), k = 0..7 |
| const __m256i vtable = _mm256_set_epi32( |
| 0x3F7AC0C7, 0x3F7744FD, 0x3F75672A, 0x3F7504F3, 0x3F75FED7, 0x3F7837F0, 0x3F7B95C2, 0x3F800000); |
| const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f); |
| // Coefficient of polynomial approximation |
| // exp(t) - 1 ~ t * (1 + t * (c2 + t * (c3 + t * c4))) |
| // on [-log(2)/16, log(2)/16] |
| const __m256 vc4 = _mm256_set1_ps(0x1.5558ECp-5f); |
| const __m256 vc3 = _mm256_set1_ps(0x1.555C20p-3f); |
| const __m256 vc2 = _mm256_set1_ps(0x1.000000p-1f); |
| const __m256 vone = _mm256_set1_ps(1.0f); |
| |
| for (; n != 0; n -= 8 * sizeof(float)) { |
| __m256 vx = _mm256_loadu_ps(input); |
| |
| // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680. |
| // To guarantee this behaviour, we clip input at sat_cutoff, and leverage the fact that for our implementation |
| // expm1f(sat_cutoff) == -1.0f. The order of operands in the VMAXPS instruction matters: it ensures that NaN |
| // inputs are passed unchanged. |
| vx = _mm256_max_ps(vsat_cutoff, vx); |
| |
| // Compute reduced argument n := round(x / log(2), 3). |
| // We do it by adding a large number (magic bias), which cause rounding of the result to 3 fractional bits, then |
| // subtracing the large number back. The first addition is combined with multiplication by log2e into a single FMA |
| // instruction. The trick with adding large number is valid only within certain bounds (|x / log(2)| <= 2**19, |
| // i.e. |x| <= 0x1.62E43p+18 = 363408.75), but that is acceptable, because inputs x are restricted to |
| // [-17.328680, 0]. |
| // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range. |
| __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s := 2**n for valid inputs, i.e. -17.328680 <= x <= 0.0. As n |
| // has 4 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in two steps: |
| // 1. Fetch 2**frac(n) from the table using the 4 low bits of n, as integer. Note that the fetched values are in |
| // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. |
| // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized |
| // number, because for -17.328680 <= x <= 0.0 we have -25 <= int(n) <= 0, and thus the adjusted exponent is not |
| // lower than -25. |
| // |
| // Shift bits 3:11 into 23:31 (position of floating-point exponent). |
| const __m256i ven = _mm256_slli_epi32(_mm256_castps_si256(vn), 20); |
| |
| // Use bits 0:3 bits of n, as integer, as an index for table lookup of l := 2**frac(n). |
| const __m256i vl = _mm256_permutevar8x32_epi32(vtable, _mm256_castps_si256(vn)); |
| |
| // Adjust exponent of the value l fetched from the table to get the final s value. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ven)); |
| |
| // Subtract the large number back to get final n := round(x / log(2), 3). |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - n * log(2). |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); |
| |
| // Compute degree-4 polynomial approximation for exp(t) - 1 on [-log(2)/16, log(2)/16]. |
| // P(t) = t * (1 + t * (c2 + t * (c3 + t * c4))) = t + t * (t * (c2 + t * (c3 + t * c4))) = t + t * p |
| __m256 vp = _mm256_fmadd_ps(vc4, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_mul_ps(vp, vt); |
| |
| // Reconstruct the exp(x) - 1 value: |
| // exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * (c3 + t * c4)))) - 1 |
| // = (s - 1) + s * (t + t * p) |
| // = ((t * s) + (t * s) * p) + (s - 1) |
| vt = _mm256_mul_ps(vt, vs); |
| const __m256 vsm1 = _mm256_sub_ps(vs, vone); |
| vp = _mm256_fmadd_ps(vp, vt, vt); |
| const __m256 vf = _mm256_add_ps(vp, vsm1); |
| |
| _mm256_storeu_ps(output, vf); |
| |
| input += 8; |
| output += 8; |
| } |
| } |