blob: 980c045fda7eccf0a30536db96556cc2afe99028 [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <xnnpack/common.h>
#include <xnnpack/math.h>
#include <xnnpack/math-stubs.h>
// Table of exp2(k / 16) values decremented (as integer) by (k << 19), k = 0..15
extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_16[16];
void xnn_math_f32_expm1minus__scalar_rr2_lut16_p3(
size_t n,
const float* input,
float* output)
{
assert(n % (4 * sizeof(float)) == 0);
// Large number such that ulp(magic bias) == exp2(-4)
const float vmagic_bias = 0x1.800000p19f;
const float vlog2e = 0x1.715476p+0f;
// Mask for the lowest 4 bits
const uint32_t vindex_mask = UINT32_C(0xF);
// The largest x for which expm1f(x) is saturated at -1.0f.
const float vsat_cutoff = -0x1.154246p+4f;
// Last 9 bits are zeroes
const float vminus_ln2_hi = -0x1.62E400p-1f;
const float vminus_ln2_lo = -0x1.7F7D1Cp-20f;
// Coefficient of polynomial approximation
// exp(t) - 1 ~ t * (1 + t * (c2 + t * c3))
// on [-log(2)/32, log(2)/32]
const float vc3 = 0x1.55561Cp-3f;
const float vc2 = 0x1.0001ECp-1f;
const float vone = 1.0f;
for (; n != 0; n -= sizeof(float)) {
float vx = *input++;
// Compute reduced argument n := round(x / log(2), 4).
// We do it by adding a large number (magic bias), which cause rounding of the result to 4 fractional bits, then
// subtracing the large number back. The trick with adding large number is valid only within certain bounds
// (|x / log(2)| <= 2**18, i.e. |x| <= 0x1.62E43p+17 = 181704.375), but that is acceptable, because inputs x are
// restricted to [-17.328680, 0].
// Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
float vn = vx * vlog2e + vmagic_bias;
// Create a floating-point number s (scale) such that s := 2**n for valid inputs, i.e. -17.328680 <= x <= 0.0. As n
// has 4 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in two steps:
// 1. Fetch 2**frac(n) from the table using the 4 low bits of n, as integer. Note that the fetched values are in
// the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
// number, because for -17.328680 <= x <= 0.0 we have -25 <= int(n) <= 0, and thus the adjusted exponent is not
// lower than -25.
//
// Shift bits 4:12 into 23:31 (position of floating-point exponent).
const uint32_t ven = float_as_uint32(vn) << 19;
// Use bits 0:4 bits of n, as integer, as an index for table lookup of l := 2**frac(n).
const uint32_t vidx = float_as_uint32(vn) & vindex_mask;
// Adjust exponent of the value l fetched from the table to get the final s value.
float vs = uint32_as_float(xnn_table_exp2minus_k_over_16[vidx] + ven);
// Subtract the large number back to get final n := round(x / log(2), 4).
vn -= vmagic_bias;
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float vt = vn * vminus_ln2_hi + vx;
vt = vn * vminus_ln2_lo + vt;
// The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680.
// To guarantee this behaviour, we zero out s (scale) and t (reduced argument) for x <= sat_cutoff.
if XNN_UNPREDICTABLE(vx <= vsat_cutoff) {
vs = 0.0f;
vt = 0.0f;
}
// Compute degree-3 polynomial approximation for exp(t) - 1 on [-log(2)/32, log(2)/32].
// P(t) = t * (1 + t * (c2 + t * c3)) = t + t * (t * (c2 + t * c3)) = t + t * p
float vp = vc3 * vt + vc2;
vp *= vt;
// Reconstruct the exp(x) - 1 value:
// exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * c3))) - 1
// = (s - 1) + s * (t + t * p)
// = ((t * s) + (t * s) * p) + (s - 1)
vt *= vs;
const float vsm1 = vs - vone;
vp = vp * vt + vt;
const float vf = vp + vsm1;
*output++ = vf;
}
}