blob: e559853be0422f119ecfbd28c3e974e3a19c86dc [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <xnnpack/common.h>
#include <xnnpack/math.h>
#include <xnnpack/math-stubs.h>
void xnn_math_f32_expm1minus__scalar_rr2_p6(
size_t n,
const float* input,
float* output)
{
assert(n % (4 * sizeof(float)) == 0);
// Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22.
const float vmagic_bias = 0x1.8000FEp23f;
const float vlog2e = 0x1.715476p+0f;
// The largest x for which expm1f(x) is saturated at -1.0f.
const float vsat_cutoff = -0x1.154246p+4f;
// Last 5 bits are zeroes
const float vminus_ln2_hi = -0x1.62E440p-1f;
const float vminus_ln2_lo = 0x1.0105C6p-21f;
// Coefficient of polynomial approximation
// exp(t) - 1 ~ t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))
// on [-log(2)/2, log(2)/2]
const float vc6 = 0x1.6b7338p-10f;
const float vc5 = 0x1.12278Ep-7f;
const float vc4 = 0x1.555716p-5f;
const float vc3 = 0x1.5554B0p-3f;
const float vc2 = 0x1.FFFFFEp-2f;
const float vone = 1.0f;
for (; n != 0; n -= sizeof(float)) {
float vx = *input++;
// Compute reduced argument n := round(x / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing
// the large number back. The trick with adding large number is valid only within certain bounds
// (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x are
// restricted to [-17.328680, 0].
// Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
float vn = vx * vlog2e + vmagic_bias;
// Create a floating-point number s (scale) such that s == 2**n for valid inputs, i.e.
// -17.328680 <= x <= 0.0, and -25 <= n <= 0 accordingly.
float vs = uint32_as_float(float_as_uint32(vn) << 23);
// Subtract the large number back to get final n := round(x / log(2)).
vn -= vmagic_bias;
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float vt = vn * vminus_ln2_hi + vx;
vt = vn * vminus_ln2_lo + vt;
// The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680.
// To guarantee this behaviour, we zero out s (scale) and t (reduced argument) for x <= sat_cutoff.
if XNN_UNPREDICTABLE(vx <= vsat_cutoff) {
vs = 0.0f;
vt = 0.0f;
}
// Compute degree-6 polynomial approximation for exp(t) - 1 on [-log(2)/2, log(2)/2].
// P(t) = t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))
// = t + t * (t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6))))) = t + t * p
float vp = vc6 * vt + vc5;
vp = vp * vt + vc4;
vp = vp * vt + vc3;
vp = vp * vt + vc2;
vp *= vt;
// Reconstruct the exp(x) - 1 value:
// exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))) - 1
// = (s - 1) + s * (t + t * p)
// = ((t * s) + (t * s) * p) + (s - 1)
vt *= vs;
const float vsm1 = vs - vone;
vp = vp * vt + vt;
const float vf = vp + vsm1;
*output++ = vf;
}
}