| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_expm1minus__scalar_rr2_p6( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (4 * sizeof(float)) == 0); |
| |
| // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. |
| const float vmagic_bias = 0x1.8000FEp23f; |
| const float vlog2e = 0x1.715476p+0f; |
| // The largest x for which expm1f(x) is saturated at -1.0f. |
| const float vsat_cutoff = -0x1.154246p+4f; |
| // Last 5 bits are zeroes |
| const float vminus_ln2_hi = -0x1.62E440p-1f; |
| const float vminus_ln2_lo = 0x1.0105C6p-21f; |
| // Coefficient of polynomial approximation |
| // exp(t) - 1 ~ t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6))))) |
| // on [-log(2)/2, log(2)/2] |
| const float vc6 = 0x1.6b7338p-10f; |
| const float vc5 = 0x1.12278Ep-7f; |
| const float vc4 = 0x1.555716p-5f; |
| const float vc3 = 0x1.5554B0p-3f; |
| const float vc2 = 0x1.FFFFFEp-2f; |
| const float vone = 1.0f; |
| |
| for (; n != 0; n -= sizeof(float)) { |
| float vx = *input++; |
| |
| // Compute reduced argument n := round(x / log(2)). |
| // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing |
| // the large number back. The trick with adding large number is valid only within certain bounds |
| // (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x are |
| // restricted to [-17.328680, 0]. |
| // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range. |
| float vn = vx * vlog2e + vmagic_bias; |
| |
| // Create a floating-point number s (scale) such that s == 2**n for valid inputs, i.e. |
| // -17.328680 <= x <= 0.0, and -25 <= n <= 0 accordingly. |
| float vs = uint32_as_float(float_as_uint32(vn) << 23); |
| |
| // Subtract the large number back to get final n := round(x / log(2)). |
| vn -= vmagic_bias; |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| float vt = vn * vminus_ln2_hi + vx; |
| vt = vn * vminus_ln2_lo + vt; |
| |
| // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680. |
| // To guarantee this behaviour, we zero out s (scale) and t (reduced argument) for x <= sat_cutoff. |
| if XNN_UNPREDICTABLE(vx <= vsat_cutoff) { |
| vs = 0.0f; |
| vt = 0.0f; |
| } |
| |
| // Compute degree-6 polynomial approximation for exp(t) - 1 on [-log(2)/2, log(2)/2]. |
| // P(t) = t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6))))) |
| // = t + t * (t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6))))) = t + t * p |
| float vp = vc6 * vt + vc5; |
| vp = vp * vt + vc4; |
| vp = vp * vt + vc3; |
| vp = vp * vt + vc2; |
| vp *= vt; |
| |
| // Reconstruct the exp(x) - 1 value: |
| // exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))) - 1 |
| // = (s - 1) + s * (t + t * p) |
| // = ((t * s) + (t * s) * p) + (s - 1) |
| vt *= vs; |
| const float vsm1 = vs - vone; |
| vp = vp * vt + vt; |
| const float vf = vp + vsm1; |
| |
| *output++ = vf; |
| } |
| } |