| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <wasm_simd128.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| // Table of exp2(k / 16) values decremented (as integer) by (k << 19), k = 0..15 |
| extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_16[16]; |
| |
| void xnn_math_f32_expm1minus__wasmsimd_rr2_lut16_p3_andnot( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (4 * sizeof(float)) == 0); |
| |
| // Large number such that ulp(magic bias) == exp2(-4) |
| const v128_t vmagic_bias = wasm_f32x4_const_splat(0x1.800000p19f); |
| const v128_t vlog2e = wasm_f32x4_const_splat(0x1.715476p+0f); |
| // Mask for the lowest 4 bits |
| const v128_t vindex_mask = wasm_i32x4_const_splat(0xF); |
| // The largest x for which expm1f(x) is saturated at -1.0f. |
| const v128_t vsat_cutoff = wasm_f32x4_const_splat(-0x1.154246p+4f); |
| // Last 9 bits are zeroes |
| const v128_t vminus_ln2_hi = wasm_f32x4_const_splat(-0x1.62E400p-1f); |
| const v128_t vminus_ln2_lo = wasm_f32x4_const_splat(-0x1.7F7D1Cp-20f); |
| // Coefficient of polynomial approximation |
| // exp(t) - 1 ~ t * (1 + t * (c2 + t * c3)) |
| // on [-log(2)/32, log(2)/32] |
| const v128_t vc3 = wasm_f32x4_const_splat(0x1.55561Cp-3f); |
| const v128_t vc2 = wasm_f32x4_const_splat(0x1.0001ECp-1f); |
| const v128_t vone = wasm_f32x4_const_splat(1.0f); |
| |
| for (; n != 0; n -= 4 * sizeof(float)) { |
| v128_t vx = wasm_v128_load(input); |
| |
| // Compute reduced argument n := round(x / log(2), 4). |
| // We do it by adding a large number (magic bias), which cause rounding of the result to 4 fractional bits, then |
| // subtracing the large number back. The trick with adding large number is valid only within certain bounds |
| // (|x / log(2)| <= 2**18, i.e. |x| <= 0x1.62E43p+17 = 181704.375), but that is acceptable, because inputs x are |
| // restricted to [-17.328680, 0]. |
| // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range. |
| v128_t vn = wasm_f32x4_add(wasm_f32x4_mul(vx, vlog2e), vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s := 2**n for valid inputs, i.e. -17.328680 <= x <= 0.0. As n |
| // has 4 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in two steps: |
| // 1. Fetch 2**frac(n) from the table using the 4 low bits of n, as integer. Note that the fetched values are in |
| // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. |
| // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized |
| // number, because for -17.328680 <= x <= 0.0 we have -25 <= int(n) <= 0, and thus the adjusted exponent is not |
| // lower than -25. |
| // |
| // Shift bits 4:12 into 23:31 (position of floating-point exponent). |
| const v128_t ven = wasm_i32x4_shl(vn, 19); |
| |
| // Use bits 0:4 bits of n, as integer, as an index for table lookup of l := 2**frac(n). |
| const v128_t vidx = wasm_i32x4_shl(wasm_v128_and(vn, vindex_mask), 2); |
| const uint64_t vidx_lo = wasm_i64x2_extract_lane(vidx, 0); |
| const uint64_t vidx_hi = wasm_i64x2_extract_lane(vidx, 1); |
| const float vl0 = *((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx_lo)); |
| const float vl1 = *((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx_lo >> 32))); |
| const float vl2 = *((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx_hi)); |
| const float vl3 = *((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx_hi >> 32))); |
| const v128_t vl = wasm_f32x4_make(vl0, vl1, vl2, vl3); |
| // Adjust exponent of the value l fetched from the table to get the final s value. |
| v128_t vs = wasm_i32x4_add(vl, ven); |
| |
| // Subtract the large number back to get final n := round(x / log(2), 4). |
| vn = wasm_f32x4_sub(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| v128_t vt = wasm_f32x4_add(wasm_f32x4_mul(vn, vminus_ln2_hi), vx); |
| vt = wasm_f32x4_add(wasm_f32x4_mul(vn, vminus_ln2_lo), vt); |
| |
| // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680. |
| // To guarantee this behaviour, we zero out s (scale) and t (reduced argument) for x <= sat_cutoff. |
| const v128_t vm = wasm_f32x4_le(vx, vsat_cutoff); |
| vs = wasm_v128_andnot(vs, vm); |
| vt = wasm_v128_andnot(vt, vm); |
| |
| // Compute degree-3 polynomial approximation for exp(t) - 1 on [-log(2)/32, log(2)/32]. |
| // P(t) = t * (1 + t * (c2 + t * c3)) = t + t * (t * (c2 + t * c3)) = t + t * p |
| v128_t vp = wasm_f32x4_add(wasm_f32x4_mul(vc3, vt), vc2); |
| vp = wasm_f32x4_mul(vp, vt); |
| |
| // Reconstruct the exp(x) - 1 value: |
| // exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * c3))) - 1 |
| // = (s - 1) + s * (t + t * p) |
| // = ((t * s) + (t * s) * p) + (s - 1) |
| vt = wasm_f32x4_mul(vt, vs); |
| const v128_t vsm1 = wasm_f32x4_sub(vs, vone); |
| vp = wasm_f32x4_add(wasm_f32x4_mul(vp, vt), vt); |
| const v128_t vf = wasm_f32x4_add(vp, vsm1); |
| |
| wasm_v128_store(output, vf); |
| |
| input += 4; |
| output += 4; |
| } |
| } |