| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f16_expminus__neonfp16arith_rr2_p2( |
| size_t n, |
| const void* input, |
| void* output) |
| { |
| assert(n % (8 * sizeof(__fp16)) == 0); |
| |
| // Large number such that ulp(magic bias) == 1 and magic bias === 15 mod 2**9. |
| const float16x8_t vmagic_bias = vmovq_n_f16(0x1.83Cp+10f); |
| const float16x8_t vlog2e = vmovq_n_f16(0x1.714p+0f); |
| const float16x8_t vminus_ln2_hi = vmovq_n_f16(-0x1.630p-1f); |
| const float16x8_t vminus_ln2_lo = vmovq_n_f16(0x1.BD0p-13f); |
| // Coefficient of polynomial approximation |
| // exp(t) ~ 1 + t * (1 + t * (c2 + t * c3)) |
| // on [-log(2)/2, log(2)/2] |
| const float16x8_t vc2 = vmovq_n_f16(0x1.FE4p-2f); |
| const float16x8_t vc1 = vmovq_n_f16(0x1.038p0f); |
| // The smallest x for which exph(x) is normalized. |
| const float16x8_t vdenorm_cutoff = vmovq_n_f16(-0x1.368p3f); |
| |
| const __fp16* i = (const __fp16*) input; |
| __fp16* o = (__fp16*) output; |
| for (; n != 0; n -= 8 * sizeof(__fp16)) { |
| const float16x8_t vx = vld1q_f16(i); i += 8; |
| |
| // Compute reduced argument n := round(x / log(2)). |
| // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result |
| // to an integer, then subtracing the large number back. The first addition is combined with multiplication by |
| // log2e into a single FMA instruction. The trick with adding large number is valid only within certain bounds |
| // (|x / log(2)| <= 2**9, i.e. |x| <= 0x1.630p+8 = 355.0), but that is acceptable, because inputs outside |
| // of [-9.703125, 0.0] underflow exph(x) anyway. We fixup the result for such inputs at the very end of the |
| // algorithm. |
| float16x8_t vn = vfmaq_f16(vmagic_bias, vx, vlog2e); |
| |
| // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. |
| // -9.703125 <= x <= 0.0, and -14 <= n <= 0 accordingly. |
| const float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10)); |
| |
| // Subtract the large number back to get final n := round(x / log(2)) as a floating-point number. |
| vn = vsubq_f16(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| float16x8_t vt = vfmaq_f16(vx, vn, vminus_ln2_hi); |
| vt = vfmaq_f16(vt, vn, vminus_ln2_lo); |
| |
| // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]: |
| // P(t) = 1 + t * (c1 + t * c2) = 1 + t * p |
| const float16x8_t vp = vfmaq_f16(vc1, vc2, vt); |
| |
| // Reconstruct the exp(x) value: |
| // exp(x) = s * (1 + t * (c1 + t * c2)) |
| // = s + (t * s) * (c1 + t * c2) |
| // = s + (t * s) * p |
| vt = vmulq_f16(vt, vs); |
| float16x8_t vf = vfmaq_f16(vs, vp, vt); |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = vreinterpretq_f16_u16(vbicq_u16(vreinterpretq_u16_f16(vf), vcltq_f16(vx, vdenorm_cutoff))); |
| vst1q_f16(o, vf); o += 8; |
| } |
| } |