| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_expminus__avx2_rr1_p5( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (8 * sizeof(float)) == 0); |
| |
| // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); |
| const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f); |
| // Coefficient of polynomial approximation |
| // exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // on [-log(2)/2, log(2)/2] |
| const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); |
| const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); |
| const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); |
| const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); |
| const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); |
| // The smallest x for which expf(x) is normalized. |
| const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); |
| |
| for (; n != 0; n -= 8 * sizeof(float)) { |
| const __m256 vx = _mm256_loadu_ps(input); |
| |
| // Compute reduced argument n := round(x / log(2)). |
| // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result |
| // to an integer, then subtracing the large number back. The first addition is combined with multiplication by |
| // log2e into a single FMA instruction. The trick with adding large number is valid only within certain bounds |
| // (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs outside |
| // of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end of the |
| // algorithm. |
| __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. |
| // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
| |
| // Subtract the large number back to get final n := round(x / log(2)) as a floating-point number. |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - n * log(2). |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]: |
| // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p |
| __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); |
| vp = _mm256_fmadd_ps(vp, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| |
| // Reconstruct the exp(x) value: |
| // exp(x) = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) |
| // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // = s + (t * s) * p |
| vt = _mm256_mul_ps(vt, vs); |
| __m256 vf = _mm256_fmadd_ps(vt, vp, vs); |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); |
| _mm256_storeu_ps(output, vf); |
| |
| input += 8; |
| output += 8; |
| } |
| } |