| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_expminus__neonfma_rr2_p5( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (4 * sizeof(float)) == 0); |
| |
| // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. |
| const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f); |
| const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f); |
| const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f); |
| const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f); |
| // Coefficient of polynomial approximation |
| // exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // on [-log(2)/2, log(2)/2] |
| const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f); |
| const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f); |
| const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f); |
| const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f); |
| const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f); |
| // The smallest x for which expf(x) is normalized. |
| const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f); |
| |
| for (; n != 0; n -= 4 * sizeof(float)) { |
| const float32x4_t vx = vld1q_f32(input); input += 4; |
| |
| // Compute reduced argument n := round(x / log(2)). |
| // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result |
| // to an integer, then subtracing the large number back. The first addition is combined with multiplication by |
| // log2e into a single FMA instruction. The trick with adding large number is valid only within certain bounds |
| // (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs outside |
| // of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end of the |
| // algorithm. |
| float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e); |
| |
| // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. |
| // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. |
| const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); |
| |
| // Subtract the large number back to get final n := round(x / log(2)) as a floating-point number. |
| vn = vsubq_f32(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi); |
| vt = vfmaq_f32(vt, vn, vminus_ln2_lo); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]: |
| // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p |
| float32x4_t vp = vfmaq_f32(vc4, vc5, vt); |
| vp = vfmaq_f32(vc3, vp, vt); |
| vp = vfmaq_f32(vc2, vp, vt); |
| vp = vfmaq_f32(vc1, vp, vt); |
| |
| // Reconstruct the exp(x) value: |
| // exp(x) = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) |
| // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // = s + (t * s) * p |
| vt = vmulq_f32(vt, vs); |
| float32x4_t vf = vfmaq_f32(vs, vp, vt); |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff))); |
| vst1q_f32(output, vf); output += 4; |
| } |
| } |