blob: 901c5946e3ce894fb388a70ee99f0e93fbefd4cb [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <xnnpack/common.h>
#include <xnnpack/math.h>
#include <xnnpack/math-stubs.h>
void xnn_math_f32_expminus__scalar_rr2_p5(
size_t n,
const float* input,
float* output)
{
assert(n % sizeof(float) == 0);
// Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22.
const float vmagic_bias = 0x1.8000FEp23f;
const float vlog2e = 0x1.715476p+0f;
// Last 7 bits are zeroes
const float vminus_ln2_hi = -0x1.62E400p-1f;
const float vminus_ln2_lo = -0x1.7F7D1Cp-20f;
// Coefficient of polynomial approximation
// exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// on [-log(2)/2, log(2)/2]
const float vc5 = 0x1.0F9F9Cp-7f;
const float vc4 = 0x1.573A1Ap-5f;
const float vc3 = 0x1.555A80p-3f;
const float vc2 = 0x1.FFFDC6p-2f;
const float vc1 = 0x1.FFFFF6p-1f;
// The smallest x for which expf(x) is normalized.
const float vdenorm_cutoff = -0x1.5D589Ep6f;
for (; n != 0; n -= sizeof(float)) {
const float vx = *input++;
// Compute reduced argument n := round(x / log(2)).
// We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
// to an integer, then subtracing the large number back. The trick with adding large number is valid only within
// certain bounds (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because
// inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very
// end of the algorithm.
float vn = vx * vlog2e + vmagic_bias;
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
const float vs = uint32_as_float(float_as_uint32(vn) << 23);
// Subtract the large number back to get final n := round(x / log(2)) as a floating-point number.
vn -= vmagic_bias;
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float vt = vn * vminus_ln2_hi + vx;
vt = vn * vminus_ln2_lo + vt;
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]:
// P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p
float vp = vc5 * vt + vc4;
vp = vp * vt + vc3;
vp = vp * vt + vc2;
vp = vp * vt + vc1;
// Reconstruct the exp(x) value:
// exp(x) = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt *= vs;
float vf = vt * vp + vs;
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
vf = 0.0f;
}
*output++ = vf;
}
}