| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_expminus__scalar_rr2_p5( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % sizeof(float) == 0); |
| |
| // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. |
| const float vmagic_bias = 0x1.8000FEp23f; |
| const float vlog2e = 0x1.715476p+0f; |
| // Last 7 bits are zeroes |
| const float vminus_ln2_hi = -0x1.62E400p-1f; |
| const float vminus_ln2_lo = -0x1.7F7D1Cp-20f; |
| // Coefficient of polynomial approximation |
| // exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // on [-log(2)/2, log(2)/2] |
| const float vc5 = 0x1.0F9F9Cp-7f; |
| const float vc4 = 0x1.573A1Ap-5f; |
| const float vc3 = 0x1.555A80p-3f; |
| const float vc2 = 0x1.FFFDC6p-2f; |
| const float vc1 = 0x1.FFFFF6p-1f; |
| // The smallest x for which expf(x) is normalized. |
| const float vdenorm_cutoff = -0x1.5D589Ep6f; |
| |
| for (; n != 0; n -= sizeof(float)) { |
| const float vx = *input++; |
| |
| // Compute reduced argument n := round(x / log(2)). |
| // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result |
| // to an integer, then subtracing the large number back. The trick with adding large number is valid only within |
| // certain bounds (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because |
| // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very |
| // end of the algorithm. |
| float vn = vx * vlog2e + vmagic_bias; |
| |
| // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. |
| // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. |
| const float vs = uint32_as_float(float_as_uint32(vn) << 23); |
| |
| // Subtract the large number back to get final n := round(x / log(2)) as a floating-point number. |
| vn -= vmagic_bias; |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| float vt = vn * vminus_ln2_hi + vx; |
| vt = vn * vminus_ln2_lo + vt; |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]: |
| // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p |
| float vp = vc5 * vt + vc4; |
| vp = vp * vt + vc3; |
| vp = vp * vt + vc2; |
| vp = vp * vt + vc1; |
| |
| // Reconstruct the exp(x) value: |
| // exp(x) = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) |
| // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // = s + (t * s) * p |
| vt *= vs; |
| float vf = vt * vp + vs; |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) { |
| vf = 0.0f; |
| } |
| |
| *output++ = vf; |
| } |
| } |