| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f16_sigmoid__avx2_rr1_p2_rcp( |
| size_t n, |
| const void* input, |
| void* output) |
| { |
| assert(n % (8 * sizeof(uint16_t)) == 0); |
| |
| // Floating-point mask with only the sign bit set |
| const __m256 vsign_mask = _mm256_set1_ps(-0.0f); |
| // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f); |
| const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f); |
| // Coefficient of polynomial approximation of |
| // exp(t) ~ 1 + t * (c1 + t * c2) on [-log(2)/2, log(2)/2] |
| const __m256 vc2 = _mm256_set1_ps(0x1.FF3A32p-2f); |
| const __m256 vc1 = _mm256_set1_ps(0x1.039E10p+0f); |
| const __m256 vone = _mm256_set1_ps(1.0f); |
| // The smallest x for which sigmoidh(x) is normalized. |
| // This number is also the smallest x for which exph(x) is normalized. |
| const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.368000p+3f); |
| |
| const uint16_t* i = (const uint16_t*) input; |
| uint16_t* o = (uint16_t*) output; |
| for (; n != 0; n -= 8 * sizeof(uint16_t)) { |
| const __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
| i += 8; |
| |
| // General structure of the algorithm: |
| // |
| // / exp(x) / (1 + exp(x)) if x <= 0 |
| // f[x] := |
| // \ 1 - f[-x] if x >= 0 |
| // |
| // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0. |
| const __m256 vz = _mm256_or_ps(vx, vsign_mask); |
| |
| // Compute reduced argument n := round(z / log(2)). |
| // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the |
| // result to an integer, then subtracing the large number back. The first addition is combined with multiplication |
| // by log2e into a single FMA instruction. The trick with adding large number is valid only within certain bounds |
| // (|x / log(2)| <= 2**9, i.e. |z| <= 0x1.630p+8 = 355.0), but that is acceptable, because inputs x outside |
| // of [-9.703125, 8.3125] (i.e. z outside [9.703125, 0]) underflow or saturate sigmoidh(x). We fixup the result for |
| // such inputs at the very end of the algorithm. |
| __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. |
| // -9.703125 <= z <= 0.0, and -14 <= n <= 0 accordingly. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
| |
| // Subtract the large number back to get the final n := round(z / log(2)) as a floating-point number. |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := z - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
| |
| // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| // P(t) = 1 + t * (c1 + t * c2) = 1 + t * p |
| const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1); |
| |
| // Reconstruct the exp(z) value: |
| // e = s * (1 + t * (c1 + t * c2)) |
| // = s + (t * s) * (c1 + t * c2) |
| // = s + (t * s) * p |
| vt = _mm256_mul_ps(vt, vs); |
| const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); |
| |
| // Denominator of the sigmoid fraction: 1.0 + exp(z) |
| const __m256 vd = _mm256_add_ps(ve, vone); |
| |
| // Compute approximate reciprocal of denominator. |
| // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. |
| // Thus the reciprocal of the denominator never overflows. |
| const __m256 vr = _mm256_rcp_ps(vd); |
| |
| // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z)) |
| __m256 vf = _mm256_mul_ps(ve, vr); |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); |
| |
| // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z) |
| vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); |
| |
| _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_NO_EXC)); |
| o += 8; |
| } |
| } |