| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f16_sigmoid__neonfp16arith_rr2_p2_recpe( |
| size_t n, |
| const void* input, |
| void* output) |
| { |
| assert(n % (8 * sizeof(__fp16)) == 0); |
| |
| // Large number such that ulp(magic bias) == 1 and magic bias === 15 mod 2**9. |
| const float16x8_t vmagic_bias = vmovq_n_f16(0x1.83Cp+10f); |
| const float16x8_t vminus_log2e = vmovq_n_f16(-0x1.714p+0f); |
| const float16x8_t vln2_hi = vmovq_n_f16(0x1.630p-1f); |
| const float16x8_t vln2_lo = vmovq_n_f16(-0x1.BD0p-13f); |
| // Coefficient of polynomial approximation |
| // exp(-t) ~ 1 + t * (c1 + t * c2) |
| // on [-log(2)/2, log(2)/2] |
| const float16x8_t vc2 = vmovq_n_f16(0x1.FE4p-2f); |
| const float16x8_t vc1 = vmovq_n_f16(-0x1.038p+0f); |
| const float16x8_t vone = vmovq_n_f16(1.0f); |
| // The largest z for which sigmoidh(-z) is normalized. |
| // This number is also the largest z for which exph(-z) is normalized. |
| const float16x8_t vdenorm_cutoff = vmovq_n_f16(-0x1.368p+3f); |
| |
| const __fp16* i = (const __fp16*) input; |
| __fp16* o = (__fp16*) output; |
| for (; n != 0; n -= 8 * sizeof(__fp16)) { |
| const float16x8_t vx = vld1q_f16(i); i += 8; |
| |
| // General structure of the algorithm: |
| // |
| // / exp(x) / (1 + exp(x)) if x <= 0 |
| // f[x] := |
| // \ 1 - f[-x] if x >= 0 |
| // |
| // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), |
| // then replace result with 1 - f[-z] if x >= 0. |
| const float16x8_t vz = vabsq_f16(vx); |
| |
| // Compute reduced argument n := round(-z / log(2)). |
| // We do it by adding a large number (magic bias) to the product z * (-1/log(2)), which cause rounding of the |
| // result to an integer, then subtracing the large number back. The first addition is combined with multiplication |
| // by -log2e into a single FMA instruction. The trick with adding large number is valid only within certain bounds |
| // (|-x / log(2)| <= 2**9, i.e. |z| <= 0x1.630p+8 = 355.0), but that is acceptable, because inputs outside |
| // of [-9.703125, 8.3125] (i.e. z outside [0, 9.703125]) underflow or saturate sigmoidh(x). We fixup the result for |
| // such inputs at the very end of the algorithm. |
| float16x8_t vn = vfmaq_f16(vmagic_bias, vz, vminus_log2e); |
| |
| // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. |
| // -9.703125 <= -z <= 0.0, and -14 <= n <= 0 accordingly. |
| const float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10)); |
| |
| // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number. |
| vn = vsubq_f16(vn, vmagic_bias); |
| |
| // Compute reduced argument t := z - n * log(2). Note that -t = -z - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent -log(2)) to improve accuracy. |
| float16x8_t vt = vfmaq_f16(vz, vn, vln2_hi); |
| vt = vfmaq_f16(vt, vn, vln2_lo); |
| |
| // Compute degree-2 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]: |
| // P(t) = 1 + t * (c1 + t * c2) = 1 + t * p |
| float16x8_t vp = vfmaq_f16(vc1, vc2, vt); |
| |
| // Reconstruct the exp(-z) value: |
| // e = s * (1 + t * (c1 + t * c2) |
| // = s * (1 + t * p) |
| // = s + (t * s) * p |
| vt = vmulq_f16(vt, vs); |
| float16x8_t ve = vfmaq_f16(vs, vp, vt); |
| |
| // Denominator of the sigmoid fraction: 1.0 + exp(-z) |
| float16x8_t vd = vaddq_f16(ve, vone); |
| |
| // Compute approximate reciprocal of denominator. |
| // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. |
| // Thus the reciprocal of the denominator never overflows. |
| const float16x8_t vr = vrecpeq_f16(vd); |
| |
| // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) |
| float16x8_t vf = vmulq_f16(ve, vr); |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = vreinterpretq_f16_u16(vbicq_u16(vreinterpretq_u16_f16(vf), vcagtq_f16(vx, vdenorm_cutoff))); |
| |
| // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) |
| const uint16x8_t vm = vcltq_f16(vx, vmovq_n_f16(0.0f)); |
| vf = vbslq_f16(vm, vf, vsubq_f16(vone, vf)); |
| |
| vst1q_f16(o, vf); o += 8; |
| } |
| } |