blob: 9588a1446aa8d1b19cf13cc0c27f92bb057b08e9 [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/math-stubs.h>
// Table of exp2(k / 64) values decremented (as integer) by (k << 17), k = 0..63
extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64];
void xnn_math_f32_sigmoid__avx2_rr1_lut64_p2_gather_nr2fma(
size_t n,
const float* input,
float* output)
{
assert(n % (8 * sizeof(float)) == 0);
// Floating-point mask with only the sign bit set
const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
// Large number such that ulp(magic bias) == exp2(-6)
const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p17f);
const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f);
// Mask for the lowest 6 bits
const __m256 vindex_mask = _mm256_castsi256_ps(_mm256_set1_epi32(INT32_C(0x3F)));
const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
// Coefficient of polynomial approximation of exp(t) ~ 1 + t * (1 + t * c2) on [-log(2)/128, log(2)/128]
const __m256 vc2 = _mm256_set1_ps(0x1.FFFF0Ap-2f);
const __m256 vone = _mm256_set1_ps(1.0f);
// The smallest x for which sigmoidf(x) is normalized.
// This number is also the smallest x for which expf(x) is normalized.
const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
for (; n != 0; n -= 8 * sizeof(float)) {
const __m256 vx = _mm256_loadu_ps(input);
// General structure of the algorithm:
//
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0.
const __m256 vz = _mm256_or_ps(vx, vsign_mask);
// Compute reduced argument n := round(z / log(2), 6).
// We do it by adding a large number (magic bias), which cause rounding of the result to 6 fractional bits, then
// subtracing the large number back. The addition is combined with multiplication by log2e into a single FMA
// instruction. The trick with adding large number is valid only within certain bounds (|z / log(2)| <= 2**16, i.e.
// |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
// (i.e. z outsize [87.336544, 0]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
// very end of the algorithm.
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
// Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(z) is normalized,
// i.e. -87.33642 <= z <= 0. As n has 6 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s
// in two steps:
// 1. Fetch 2**frac(n) from the table using the 6 low bits of n, as integer. Note that the fetched values are in
// the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
// number, because for -87.33642 <= z <= 0 (inputs for which sigmoidf(z) is normalized) we have
// -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126.
//
// Shift bits 6:14 into 23:31 (position of floating-point exponent).
__m256i ve = _mm256_slli_epi32(_mm256_castps_si256(vn), 17);
// Use bits 0:6 of n, as integer, as an index for table lookup of l := 2**frac(n).
const __m256i vidx = _mm256_castps_si256(_mm256_and_ps(vn, vindex_mask));
const __m256i vl = _mm256_i32gather_epi32((const int*) xnn_table_exp2minus_k_over_64, vidx, sizeof(float));
// Adjust exponent of the value l fetched from the table to get the final s value.
const __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ve));
// Subtract the large number back to get the final n := round(z / log(2), 6) as a floating-point number.
vn = _mm256_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := z - n * log(2).
const __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
// Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
// P(t) = 1 + t * (1 + t * c2) = 1 + (t + t * (t * c2)) = 1 + p
__m256 vp = _mm256_mul_ps(vt, vc2);
vp = _mm256_fmadd_ps(vt, vp, vt);
// Reconstruct the exp(z) value:
// e = s * (1 + t * (1 + t * c2))
// = s * (1 + p)
// = s + s * p
const __m256 vy = _mm256_fmadd_ps(vs, vp, vs);
// Denominator of the sigmoid fraction: 1.0 + exp(z)
const __m256 vd = _mm256_add_ps(vy, vone);
// Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
// Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
// Thus the reciprocal of the denominator never overflows.
__m256 vr = _mm256_rcp_ps(vd);
vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
// Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
__m256 vf = _mm256_mul_ps(vy, vr);
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
_mm256_storeu_ps(output, vf);
input += 8;
output += 8;
}
}