| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| // Table of exp2(k / 64) values decremented (as integer) by (k << 17), k = 0..63 |
| extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; |
| |
| void xnn_math_f32_sigmoid__avx2_rr2_lut64_p2_gather_nr1fma( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (8 * sizeof(float)) == 0); |
| |
| // Floating-point mask with only the sign bit set |
| const __m256 vsign_mask = _mm256_set1_ps(-0.0f); |
| // Large number such that ulp(magic bias) == exp2(-6) |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p17f); |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f); |
| // Mask for the lowest 6 bits |
| const __m256 vindex_mask = _mm256_castsi256_ps(_mm256_set1_epi32(INT32_C(0x3F))); |
| const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); |
| const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); |
| // Coefficient of polynomial approximation of exp(t) ~ 1 + t * (1 + t * c2) on [-log(2)/128, log(2)/128] |
| const __m256 vc2 = _mm256_set1_ps(0x1.FFFF0Ap-2f); |
| const __m256 vone = _mm256_set1_ps(1.0f); |
| // The smallest x for which sigmoidf(x) is normalized. |
| // This number is also the smallest x for which expf(x) is normalized. |
| const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f); |
| |
| for (; n != 0; n -= 8 * sizeof(float)) { |
| const __m256 vx = _mm256_loadu_ps(input); |
| |
| // General structure of the algorithm: |
| // |
| // / exp(x) / (1 + exp(x)) if x <= 0 |
| // f[x] := |
| // \ 1 - f[-x] if x >= 0 |
| // |
| // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0. |
| const __m256 vz = _mm256_or_ps(vx, vsign_mask); |
| |
| // Compute reduced argument n := round(z / log(2), 6). |
| // We do it by adding a large number (magic bias), which cause rounding of the result to 6 fractional bits, then |
| // subtracing the large number back. The addition is combined with multiplication by log2e into a single FMA |
| // instruction. The trick with adding large number is valid only within certain bounds (|z / log(2)| <= 2**16, i.e. |
| // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678] |
| // (i.e. z outsize [87.336544, 0]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the |
| // very end of the algorithm. |
| __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(z) is normalized, |
| // i.e. -87.33642 <= z <= 0. As n has 6 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s |
| // in two steps: |
| // 1. Fetch 2**frac(n) from the table using the 6 low bits of n, as integer. Note that the fetched values are in |
| // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. |
| // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized |
| // number, because for -87.33642 <= z <= 0 (inputs for which sigmoidf(z) is normalized) we have |
| // -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126. |
| // |
| // Shift bits 6:14 into 23:31 (position of floating-point exponent). |
| __m256i ve = _mm256_slli_epi32(_mm256_castps_si256(vn), 17); |
| |
| // Use bits 0:6 of n, as integer, as an index for table lookup of l := 2**frac(n). |
| const __m256i vidx = _mm256_castps_si256(_mm256_and_ps(vn, vindex_mask)); |
| const __m256i vl = _mm256_i32gather_epi32((const int*) xnn_table_exp2minus_k_over_64, vidx, sizeof(float)); |
| // Adjust exponent of the value l fetched from the table to get the final s value. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ve)); |
| |
| // Subtract the large number back to get the final n := round(z / log(2), 6) as a floating-point number. |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := z - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vz); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128]. |
| // P(t) = 1 + t * (1 + t * c2) = 1 + (t + t * (t * c2)) = 1 + p |
| __m256 vp = _mm256_mul_ps(vt, vc2); |
| vp = _mm256_fmadd_ps(vt, vp, vt); |
| |
| // Reconstruct the exp(z) value: |
| // e = s * (1 + t * (1 + t * c2)) |
| // = s * (1 + p) |
| // = s + s * p |
| const __m256 vy = _mm256_fmadd_ps(vs, vp, vs); |
| |
| // Denominator of the sigmoid fraction: 1.0 + exp(z) |
| const __m256 vd = _mm256_add_ps(vy, vone); |
| |
| // Use Newton-Raphson method (1 iteration) to compute reciprocal of denominator. |
| // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. |
| // Thus the reciprocal of the denominator never overflows. |
| __m256 vr = _mm256_rcp_ps(vd); |
| vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr); |
| |
| // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z)) |
| __m256 vf = _mm256_mul_ps(vy, vr); |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); |
| |
| // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z) |
| vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); |
| |
| _mm256_storeu_ps(output, vf); |
| |
| input += 8; |
| output += 8; |
| } |
| } |