blob: a4e5aed7a480ee5bf40381c287ea171724bf45f6 [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <math.h>
#include <xnnpack/common.h>
#include <xnnpack/math.h>
#include <xnnpack/math-stubs.h>
// Table of exp2(k / 64) values decremented (as integer) by (k << 17), k = 0..63
extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_64[64];
void xnn_math_f32_sigmoid__scalar_rr2_lut64_p2_div(
size_t n,
const float* input,
float* output)
{
assert(n % sizeof(float) == 0);
// Large number such that ulp(magic bias) == exp2(-6)
const float vmagic_bias = 0x1.800000p17f;
const float vminus_log2e = -0x1.715476p0f;
// Mask for the lowest 6 bits
const uint32_t vindex_mask = UINT32_C(0x3F);
// Last 13 bits are zeroes
const float vln2_hi = 0x1.630000p-1f;
const float vln2_lo = -0x1.BD0106p-13f;
// Coefficient of polynomial approximation of exp(-t) ~ 1 + t * (1 + t * c2) on [-log(2)/128, log(2)/128]
const float vc2 = 0x1.FFFF0Ap-2f;
const float vone = 1.0f;
// The largest z for which sigmoidf(-z) is normalized.
// This number is also the largest z for which expf(-z) is normalized.
const float vdenorm_cutoff = 0x1.5D589Ep+6f;
for (; n != 0; n -= sizeof(float)) {
const float vx = *input++;
// General structure of the algorithm:
//
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[-z] if x >= 0.
const float vz = fabsf(vx);
// Compute reduced argument n := round(-z / log(2), 6).
// We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing
// the large number back. The trick with adding large number is valid only within certain bounds
// (|-z / log(2)| <= 2**16, i.e. |z| <= 0x1.62E43p+15 = 5814540.0), but that is acceptable, because inputs x
// outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup
// the result for such inputs at the very end of the algorithm.
float vn = vz * vminus_log2e + vmagic_bias;
// Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(-z) is normalized,
// i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s
// in two steps:
// 1. Fetch 2**frac(n) from the table using the 6 low bits of n, as integer. Note that the fetched values are in
// the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
// number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(z) is normalized) we have
// -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126.
//
// Shift bits 6:14 into 23:31 (position of floating-point exponent).
const uint32_t ve = float_as_uint32(vn) << 17;
// Use bits 0:6 of n, as integer, as an index for table lookup of l := 2**frac(n).
const uint32_t vidx = float_as_uint32(vn) & vindex_mask;
// Adjust exponent of the value l fetched from the table to get the final s value.
const float vs = uint32_as_float(xnn_table_exp2minus_k_over_64[vidx] + ve);
// Subtract the large number back to get the final n := round(-z / log(2), 6) as a floating-point number.
vn -= vmagic_bias;
// Compute reduced argument t := (z + n * log(2)). Note that -t = -z - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float vt = vn * vln2_hi + vz;
vt = vn * vln2_lo + vt;
// Compute degree-2 polynomial approximation for exp(-t) on [-log(2)/128, log(2)/128].
// P(t) = 1 + t * (-1 + t * c2) = 1 - (t - t * (t * c2)) = 1 - p
float vp = vt * vc2;
vp = vt - vp * vt;
// Reconstruct the exp(-z) value:
// e = s * (1 + t * (-1 + t * c2))
// = s * (1 - p)
// = s - s * p
const float vy = vs - vs * vp;
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
float vf = vy / (vy + vone);
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
vf = 0.0f;
}
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
if XNN_UNPREDICTABLE(vx > 0.0f) {
vf = vone - vf;
}
*output++ = vf;
}
}