| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <math.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| // Table of exp2(k / 64) values decremented (as integer) by (k << 17), k = 0..63 |
| extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_64[64]; |
| |
| void xnn_math_f32_sigmoid__scalar_rr2_lut64_p2_div( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % sizeof(float) == 0); |
| |
| // Large number such that ulp(magic bias) == exp2(-6) |
| const float vmagic_bias = 0x1.800000p17f; |
| const float vminus_log2e = -0x1.715476p0f; |
| // Mask for the lowest 6 bits |
| const uint32_t vindex_mask = UINT32_C(0x3F); |
| // Last 13 bits are zeroes |
| const float vln2_hi = 0x1.630000p-1f; |
| const float vln2_lo = -0x1.BD0106p-13f; |
| // Coefficient of polynomial approximation of exp(-t) ~ 1 + t * (1 + t * c2) on [-log(2)/128, log(2)/128] |
| const float vc2 = 0x1.FFFF0Ap-2f; |
| const float vone = 1.0f; |
| // The largest z for which sigmoidf(-z) is normalized. |
| // This number is also the largest z for which expf(-z) is normalized. |
| const float vdenorm_cutoff = 0x1.5D589Ep+6f; |
| |
| for (; n != 0; n -= sizeof(float)) { |
| const float vx = *input++; |
| |
| // General structure of the algorithm: |
| // |
| // / exp(x) / (1 + exp(x)) if x <= 0 |
| // f[x] := |
| // \ 1 - f[-x] if x >= 0 |
| // |
| // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), |
| // then replace result with 1 - f[-z] if x >= 0. |
| const float vz = fabsf(vx); |
| |
| // Compute reduced argument n := round(-z / log(2), 6). |
| // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing |
| // the large number back. The trick with adding large number is valid only within certain bounds |
| // (|-z / log(2)| <= 2**16, i.e. |z| <= 0x1.62E43p+15 = 5814540.0), but that is acceptable, because inputs x |
| // outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup |
| // the result for such inputs at the very end of the algorithm. |
| float vn = vz * vminus_log2e + vmagic_bias; |
| |
| // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(-z) is normalized, |
| // i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s |
| // in two steps: |
| // 1. Fetch 2**frac(n) from the table using the 6 low bits of n, as integer. Note that the fetched values are in |
| // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. |
| // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized |
| // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(z) is normalized) we have |
| // -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126. |
| // |
| // Shift bits 6:14 into 23:31 (position of floating-point exponent). |
| const uint32_t ve = float_as_uint32(vn) << 17; |
| |
| // Use bits 0:6 of n, as integer, as an index for table lookup of l := 2**frac(n). |
| const uint32_t vidx = float_as_uint32(vn) & vindex_mask; |
| // Adjust exponent of the value l fetched from the table to get the final s value. |
| const float vs = uint32_as_float(xnn_table_exp2minus_k_over_64[vidx] + ve); |
| |
| // Subtract the large number back to get the final n := round(-z / log(2), 6) as a floating-point number. |
| vn -= vmagic_bias; |
| |
| // Compute reduced argument t := (z + n * log(2)). Note that -t = -z - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| float vt = vn * vln2_hi + vz; |
| vt = vn * vln2_lo + vt; |
| |
| // Compute degree-2 polynomial approximation for exp(-t) on [-log(2)/128, log(2)/128]. |
| // P(t) = 1 + t * (-1 + t * c2) = 1 - (t - t * (t * c2)) = 1 - p |
| float vp = vt * vc2; |
| vp = vt - vp * vt; |
| |
| // Reconstruct the exp(-z) value: |
| // e = s * (1 + t * (-1 + t * c2)) |
| // = s * (1 - p) |
| // = s - s * p |
| const float vy = vs - vs * vp; |
| |
| // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) |
| float vf = vy / (vy + vone); |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) { |
| vf = 0.0f; |
| } |
| |
| // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) |
| if XNN_UNPREDICTABLE(vx > 0.0f) { |
| vf = vone - vf; |
| } |
| |
| *output++ = vf; |
| } |
| } |