| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <emmintrin.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_sigmoid__sse2_rr2_p5_nr1( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (4 * sizeof(float)) == 0); |
| |
| // Floating-point mask with only the sign bit set |
| const __m128 vsign_mask = _mm_set1_ps(-0.0f); |
| // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. |
| const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f); |
| const __m128 vlog2e = _mm_set1_ps(0x1.715476p0f); |
| // Last 7 bits are zeroes |
| const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f); |
| const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f); |
| // Coefficient of polynomial approximation of |
| // exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) on [-log(2)/2, log(2)/2] |
| const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f); |
| const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f); |
| const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f); |
| const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f); |
| const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f); |
| const __m128 vone = _mm_set1_ps(1.0f); |
| const __m128 vtwo = _mm_set1_ps(2.0f); |
| // The smallest x for which sigmoidf(x) is normalized. |
| // This number is also the smallest x for which expf(x) is normalized. |
| const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep+6f); |
| |
| for (; n != 0; n -= 4 * sizeof(float)) { |
| const __m128 vx = _mm_loadu_ps(input); |
| |
| // General structure of the algorithm: |
| // |
| // / exp(x) / (1 + exp(x)) if x <= 0 |
| // f[x] := |
| // \ 1 - f[-x] if x >= 0 |
| // |
| // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0. |
| const __m128 vz = _mm_or_ps(vx, vsign_mask); |
| |
| // Compute reduced argument n := round(z / log(2)). |
| // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing |
| // the large number back. The trick with adding large number is valid only within certain bounds |
| // (|z / log(2)| <= 2**22, i.e. |z| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x outside |
| // of [-87.336544, 17.328678] (i.e. z outsize [87.336544, 0]) underflow or saturate sigmoidf(x). We fixup the |
| // result for such inputs at the very end of the algorithm. |
| __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias); |
| |
| // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. |
| // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly. |
| const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23)); |
| |
| // Subtract the large number back to get the final n := round(z / log(2)) as a floating-point number. |
| vn = _mm_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := z - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz); |
| vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p |
| __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4); |
| vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3); |
| vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2); |
| vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1); |
| |
| // Reconstruct the exp(z) value: |
| // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) |
| // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) |
| // = s + (t * s) * p |
| vt = _mm_mul_ps(vt, vs); |
| __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs); |
| |
| // Denominator of the sigmoid fraction: 1.0 + exp(z) |
| __m128 vd = _mm_add_ps(ve, vone); |
| |
| // Use Newton-Raphson method (1 iteration) to compute reciprocal of denominator. |
| // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. |
| // Thus the reciprocal of the denominator never overflows. |
| __m128 vr = _mm_rcp_ps(vd); |
| vr = _mm_mul_ps(vr, _mm_sub_ps(vtwo, _mm_mul_ps(vr, vd))); |
| |
| // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z)) |
| __m128 vf = _mm_mul_ps(ve, vr); |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf); |
| |
| // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z) |
| __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx))); |
| vf = _mm_or_ps(_mm_and_ps(vf, vm), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf))); |
| |
| _mm_storeu_ps(output, vf); |
| |
| input += 4; |
| output += 4; |
| } |
| } |