blob: 32b7614de8a6d9b5c781cfbb8371391bcf7a6e69 [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <xnnpack/memory-planner.h>
#include <xnnpack/subgraph.h>
// Check if two xnn_value's lifecycles overlap.
inline static bool value_lifecycle_overlap(const struct xnn_value_usage* a, const struct xnn_value_usage* b) {
assert(a->last_node >= a->first_node);
assert(b->last_node >= b->first_node);
if (a->first_node < b->first_node) {
return a->last_node >= b->first_node;
} else {
return b->last_node >= a->first_node;
}
}
// Use this comparison function to sort xnn_value_usage according to the
// tensor_size in decreasing order.
static inline int cmp_value_usage_tensor_size(const void* a, const void* b) {
const size_t tensor_size_a = (*(struct xnn_value_usage *const*)a)->tensor_size;
const size_t tensor_size_b = (*(struct xnn_value_usage *const*)b)->tensor_size;
return (tensor_size_b > tensor_size_a) - (tensor_size_b < tensor_size_a);
}
static void populate_value_lifecycle(const xnn_subgraph_t subgraph, struct xnn_value_usage* usage) {
assert(subgraph != NULL);
if (subgraph->num_nodes == 0) {
return;
}
// As we initialized first/last_node in each xnn_value_usage to 0 as in 'xnn_init_value_mem_allocation_tracker',
// we start with the second node to tell whether first/last_node have been set or not, and check the first node last.
for (uint32_t nid = 1; nid < subgraph->num_nodes; ++nid) {
const struct xnn_node* node = subgraph->nodes + nid;
for (uint32_t i = 0; i < node->num_inputs; ++i) {
if (usage[node->inputs[i]].first_node == 0) {
usage[node->inputs[i]].first_node = nid;
}
usage[node->inputs[i]].last_node = nid;
}
for (uint32_t i = 0; i < node->num_outputs; ++i) {
if (usage[node->outputs[i]].first_node == 0) {
usage[node->outputs[i]].first_node = nid;
}
usage[node->outputs[i]].last_node = nid;
}
}
const struct xnn_node* first_node = subgraph->nodes;
for (uint32_t i = 0; i < first_node->num_inputs; ++i) {
usage[first_node->inputs[i]].first_node = 0;
}
for (uint32_t i = 0; i < first_node->num_outputs; ++i) {
usage[first_node->outputs[i]].first_node = 0;
}
}
// Represent a memory block [start, end)
struct memory_block {
size_t start;
size_t end;
};
// Use this comparison function to sort memory_block according to the 'start'
// in increasing order.
static inline int cmp_memory_block(const void* a, const void* b) {
const size_t start_a = ((const struct memory_block*)a)->start;
const size_t start_b = ((const struct memory_block*)b)->start;
return (start_a > start_b) - (start_a < start_b);
}
// Given the current live memory blocks, return the offset in a memory arena for a to-be-allocated value of size
// 'to_alloc_size'.
static size_t find_value_alloc_offset(struct memory_block* live_mem_blocks,
size_t num_mem_blocks,
size_t to_alloc_size) {
if (num_mem_blocks == 0) {
return 0;
}
if (num_mem_blocks == 1) {
return live_mem_blocks[0].end;
}
// Sort memory blocks according to 'start' in increasing order.
qsort(live_mem_blocks, num_mem_blocks, sizeof(struct memory_block), cmp_memory_block);
// Coalesce overlapping or immediate adjacent memory blocks to form a list of non-overlapping memory blocks in order
// to find the smallest gap.
size_t num_coalesced_mem_blocks = 1;
for (size_t i = 1; i < num_mem_blocks; ++i) {
const size_t current_coalesced_end =
live_mem_blocks[num_coalesced_mem_blocks - 1].end;
if (live_mem_blocks[i].start > current_coalesced_end) {
assert(num_coalesced_mem_blocks <= i);
live_mem_blocks[num_coalesced_mem_blocks] = live_mem_blocks[i];
num_coalesced_mem_blocks++;
continue;
}
if (live_mem_blocks[i].end > current_coalesced_end) {
live_mem_blocks[num_coalesced_mem_blocks - 1].end = live_mem_blocks[i].end;
}
}
size_t smallest_gap_size = SIZE_MAX;
// The first index to live_mem_blocks that the 'to_alloc_size' should be allocated after.
size_t smallest_gap_index = num_coalesced_mem_blocks - 1;
for (size_t i = 0; i < num_coalesced_mem_blocks - 1; ++i) {
assert(live_mem_blocks[i + 1].start > live_mem_blocks[i].end);
const size_t gap = live_mem_blocks[i + 1].start - live_mem_blocks[i].end;
if (gap >= to_alloc_size && gap < smallest_gap_size) {
smallest_gap_index = i;
smallest_gap_size = gap;
}
}
return live_mem_blocks[smallest_gap_index].end;
}
void xnn_init_value_allocation_tracker(struct xnn_value_allocation_tracker* tracker, const xnn_subgraph_t subgraph) {
tracker->subgraph = subgraph;
tracker->mem_arena_size = 0;
tracker->usage = xnn_allocate_zero_memory(sizeof(struct xnn_value_usage) * subgraph->num_values);
#if XNN_ENABLE_MEMOPT
populate_value_lifecycle(tracker->subgraph, tracker->usage);
#endif
tracker->min_value_id = XNN_INVALID_VALUE_ID;
tracker->max_value_id = XNN_INVALID_VALUE_ID;
}
void xnn_add_value_allocation_tracker(struct xnn_value_allocation_tracker* tracker,
uint32_t value_id,
size_t tensor_size) {
tracker->usage[value_id].tensor_size = tensor_size;
if (tracker->min_value_id == XNN_INVALID_VALUE_ID) {
tracker->min_value_id = value_id;
} else {
// Note that values are expected to be added in increasing order.
assert(value_id > tracker->min_value_id);
assert(value_id > tracker->max_value_id);
}
tracker->max_value_id = value_id;
}
void xnn_plan_value_allocation_tracker(struct xnn_value_allocation_tracker* tracker) {
#if XNN_ENABLE_MEMOPT
if (tracker->min_value_id == XNN_INVALID_VALUE_ID) {
assert(tracker->max_value_id == XNN_INVALID_VALUE_ID);
return;
}
const uint32_t num_values = tracker->max_value_id - tracker->min_value_id + 1;
struct xnn_value_usage** sorted_usage = xnn_allocate_zero_memory(sizeof(struct xnn_value_usage*) * num_values);
size_t num_values_to_alloc = 0;
for (size_t i = tracker->min_value_id; i <= tracker->max_value_id; ++i) {
struct xnn_value_usage* info = tracker->usage + i;
if (info->tensor_size != 0) {
sorted_usage[num_values_to_alloc++] = info;
}
}
qsort(sorted_usage, num_values_to_alloc, sizeof(struct xnn_value_usage*), cmp_value_usage_tensor_size);
// Start the allocation planning process.
struct memory_block* current_live_mem_blocks = xnn_allocate_zero_memory(
sizeof(struct memory_block) * num_values_to_alloc);
size_t mem_arena_size = 0;
for (size_t i = 0; i < num_values_to_alloc; ++i) {
size_t num_live_mem_blocks = 0;
struct xnn_value_usage* current = sorted_usage[i];
for (size_t j = 0; j < i; ++j) {
const struct xnn_value_usage* allocated = sorted_usage[j];
if (value_lifecycle_overlap(current, allocated)) {
current_live_mem_blocks[num_live_mem_blocks++] = (struct memory_block){
.start = allocated->alloc_offset,
.end = allocated->alloc_offset + allocated->tensor_size,
};
}
}
current->alloc_offset = find_value_alloc_offset(current_live_mem_blocks, num_live_mem_blocks, current->tensor_size);
if (mem_arena_size < current->alloc_offset + current->tensor_size) {
mem_arena_size = current->alloc_offset + current->tensor_size;
}
}
tracker->mem_arena_size = mem_arena_size;
xnn_release_memory(sorted_usage);
xnn_release_memory(current_live_mem_blocks);
#else
tracker->mem_arena_size = 0;
for (uint32_t i = tracker->min_value_id; i <= tracker->max_value_id; ++i) {
if (tracker->usage[i].tensor_size > 0) {
tracker->usage[i].alloc_offset = tracker->mem_arena_size;
tracker->mem_arena_size += tracker->usage[i].tensor_size;
}
}
#endif
}