| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| $assert REQUANTIZATION == "FP32" |
| $assert DATATYPE in ["QC8", "QS8", "QU8"] |
| $assert CHANNEL_TILE % 8 == 0 |
| $assert CHANNEL_TILE >= 8 |
| $assert KERNEL_TILE >= 2 |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/dwconv.h> |
| #include <xnnpack/unaligned.h> |
| |
| |
| $PARAMS_STRUCT = REQUANTIZATION.lower() + "_avx2" |
| $PARAMS_UNION = "xnn_%s_conv_minmax_params" % DATATYPE.lower() |
| $XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t" |
| $_MM256_CVTEPX8_EPI32 = "_mm256_cvtepu8_epi32" if DATATYPE == "QU8" else "_mm256_cvtepi8_epi32" |
| $_MM_PACKXS_EPI16 = "_mm_packus_epi16" if DATATYPE == "QU8" else "_mm_packs_epi16" |
| $_MM_MIN_EPX8 = "_mm_min_epu8" if DATATYPE == "QU8" else "_mm_min_epi8" |
| $_MM_MAX_EPX8 = "_mm_max_epu8" if DATATYPE == "QU8" else "_mm_max_epi8" |
| void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__avx2_mul32( |
| size_t channels, |
| size_t output_width, |
| const ${XINT8_T}** input, |
| const void* weights, |
| ${XINT8_T}* output, |
| size_t input_stride, |
| size_t output_increment, |
| size_t input_offset, |
| const ${XINT8_T}* zero, |
| const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(channels != 0); |
| assert(output_width != 0); |
| |
| $if DATATYPE == "QU8": |
| const __m256i vk_zero_point = _mm256_cvtepu16_epi32(_mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.kernel_zero_point)); |
| do { |
| $for K in range(KERNEL_TILE): |
| const ${XINT8_T}* i${K} = input[${K}]; |
| assert(i${K} != NULL); |
| if XNN_UNPREDICTABLE(i${K} != zero) { |
| i${K} = (const ${XINT8_T}*) ((uintptr_t) i${K} + input_offset); |
| } |
| input = (const ${XINT8_T}**) ((uintptr_t) input + input_stride); |
| |
| size_t c = channels; |
| const void* w = weights; |
| for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
| __m256i vacc${ABC[0:8]} = _mm256_loadu_si256((const __m256i*) w); |
| $for C in range(8, CHANNEL_TILE, 8): |
| __m256i vacc${ABC[C:C+8]} = _mm256_loadu_si256((const __m256i*) ((const int32_t*) w + ${C})); |
| |
| $for K in range(KERNEL_TILE): |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| $if C == 0: |
| const __m256i vi${K}x${ABC[0:8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) i${K})); |
| $else: |
| const __m256i vi${K}x${ABC[C:C+8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) (i${K} + ${C}))); |
| $if DATATYPE == "QU8": |
| const __m256i vk${K}x${ABC[C:C+8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T})))), vk_zero_point); |
| $else: |
| const __m256i vk${K}x${ABC[C:C+8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T})))); |
| i${K} += ${CHANNEL_TILE}; |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| vacc${ABC[C:C+8]} = _mm256_add_epi32(vacc${ABC[C:C+8]}, _mm256_mullo_epi32(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]})); |
| |
| w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T})); |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| __m256 vscaled${ABC[C:C+8]} = _mm256_cvtepi32_ps(vacc${ABC[C:C+8]}); |
| |
| $if DATATYPE == "QC8": |
| const __m256 vscale${ABC[0:8]} = _mm256_loadu_ps((const float*) w); |
| $for C in range(8, CHANNEL_TILE, 8): |
| const __m256 vscale${ABC[C:C+8]} = _mm256_loadu_ps((const float*) w + ${C}); |
| w = (const void*) ((const float*) w + ${CHANNEL_TILE}); |
| $for C in range(0, CHANNEL_TILE, 8): |
| vscaled${ABC[C:C+8]} = _mm256_mul_ps(vscaled${ABC[C:C+8]}, vscale${ABC[C:C+8]}); |
| $else: |
| const __m256 vscale = _mm256_load_ps(params->fp32_avx2.scale); |
| $for C in range(0, CHANNEL_TILE, 8): |
| vscaled${ABC[C:C+8]} = _mm256_mul_ps(vscaled${ABC[C:C+8]}, vscale); |
| |
| const __m256 voutput_max_less_zero_point = _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point); |
| $for C in range(0, CHANNEL_TILE, 8): |
| vscaled${ABC[C:C+8]} = _mm256_min_ps(vscaled${ABC[C:C+8]}, voutput_max_less_zero_point); |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| vacc${ABC[C:C+8]} = _mm256_cvtps_epi32(vscaled${ABC[C:C+8]}); |
| |
| $if CHANNEL_TILE > 8: |
| const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point); |
| $else: |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point); |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| __m256i vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_adds_epi16(_mm256_packs_epi32(vacc${ABC[C:C+8]}, vacc${ABC[C+8:C+16]}), voutput_zero_point); |
| $elif CHANNEL_TILE > 8: |
| __m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[C:C+8]}), _mm256_extracti128_si256(vacc${ABC[C:C+8]}, 1)), _mm256_castsi256_si128(voutput_zero_point)); |
| $else: |
| __m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[C:C+8]}), _mm256_extracti128_si256(vacc${ABC[C:C+8]}, 1)), voutput_zero_point); |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| __m128i vout${ABC[C:C+16]} = _mm_shuffle_epi32(${_MM_PACKXS_EPI16}(_mm256_castsi256_si128(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}), _mm256_extracti128_si256(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}, 1)), _MM_SHUFFLE(3, 1, 2, 0)); |
| $else: |
| __m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = ${_MM_PACKXS_EPI16}(vout${ABC[C:C+8]}, vout${ABC[C:C+8]}); |
| |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| vout${ABC[C:C+16]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+16]}, voutput_min); |
| $else: |
| vout${ABC[C:C+8]}${ABC[C:C+8]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+8]}${ABC[C:C+8]}, voutput_min); |
| |
| $if CHANNEL_TILE > 8: |
| _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[C:C+8]}); |
| $for C in range(16, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| _mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]}); |
| output += ${CHANNEL_TILE}; |
| } |
| if XNN_UNLIKELY(c != 0) { |
| $if CHANNEL_TILE > 8: |
| const ${XINT8_T}* k = (const ${XINT8_T}*) ((const int32_t*) w + ${CHANNEL_TILE}); |
| ${"do " if CHANNEL_TILE > 8 else ""}{ |
| __m256i vacc${ABC[0:8]} = _mm256_loadu_si256((const __m256i*) w); |
| |
| $for K in range(KERNEL_TILE): |
| |
| const __m256i vi${K}x${ABC[0:8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) i${K})); |
| $if DATATYPE == "QU8": |
| $if CHANNEL_TILE > 8: |
| $if K == 0: |
| const __m256i vk${K}x${ABC[0:8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) k)), vk_zero_point); |
| $else: |
| const __m256i vk${K}x${ABC[0:8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE}))), vk_zero_point); |
| $else: |
| const __m256i vk${K}x${ABC[0:8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T})))), vk_zero_point); |
| $else: |
| $if CHANNEL_TILE > 8: |
| $if K == 0: |
| const __m256i vk${K}x${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) k)); |
| $else: |
| const __m256i vk${K}x${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE}))); |
| $else: |
| const __m256i vk${K}x${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T})))); |
| $if CHANNEL_TILE > 8: |
| i${K} += 8; |
| |
| vacc${ABC[0:8]} = _mm256_add_epi32(vacc${ABC[0:8]}, _mm256_mullo_epi32(vi${K}x${ABC[0:8]}, vk${K}x${ABC[0:8]})); |
| |
| $if CHANNEL_TILE > 8: |
| k += 8; |
| |
| __m256 vscaled${ABC[0:8]} = _mm256_cvtepi32_ps(vacc${ABC[0:8]}); |
| $if DATATYPE == "QC8": |
| const __m256 vscale${ABC[0:8]} = _mm256_loadu_ps((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(${XINT8_T}))); |
| vscaled${ABC[0:8]} = _mm256_mul_ps(vscaled${ABC[0:8]}, vscale${ABC[0:8]}); |
| $else: |
| vscaled${ABC[0:8]} = _mm256_mul_ps(vscaled${ABC[0:8]}, _mm256_load_ps(params->fp32_avx2.scale)); |
| vscaled${ABC[0:8]} = _mm256_min_ps(vscaled${ABC[0:8]}, _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point)); |
| vacc${ABC[0:8]} = _mm256_cvtps_epi32(vscaled${ABC[0:8]}); |
| |
| $if CHANNEL_TILE > 8: |
| w = (const void*) ((const int32_t*) w + 8); |
| |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point); |
| __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[0:8]}), _mm256_extracti128_si256(vacc${ABC[0:8]}, 1)), voutput_zero_point); |
| |
| __m128i vout${ABC[0:8]}${ABC[0:8]} = ${_MM_PACKXS_EPI16}(vout${ABC[0:8]}, vout${ABC[0:8]}); |
| |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); |
| vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MAX_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_min); |
| |
| $if CHANNEL_TILE > 8: |
| if XNN_LIKELY(c >= 8) { |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); |
| output += 8; |
| c -= 8; |
| } else { |
| if (c & 4) { |
| unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (c & 2) { |
| unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (c & 1) { |
| *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| output += 1; |
| } |
| c = 0; |
| } |
| $else: |
| if (c & 4) { |
| unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (c & 2) { |
| unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (c & 1) { |
| *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| output += 1; |
| } |
| }${" while (c != 0);" if CHANNEL_TILE > 8 else ""} |
| } |
| |
| output = (${XINT8_T}*) ((uintptr_t) output + output_increment); |
| } while (--output_width != 0); |
| } |