| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| $assert REQUANTIZATION == "FP32" |
| $assert DATATYPE in ["QC8", "QS8", "QU8"] |
| $assert CHANNEL_TILE % 16 == 0 |
| $assert CHANNEL_TILE >= 16 |
| $assert KERNEL_TILE >= 2 |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/dwconv.h> |
| #include <xnnpack/intrinsics-polyfill.h> |
| |
| |
| $PARAMS_STRUCT = REQUANTIZATION.lower() + "_avx512" |
| $PARAMS_UNION = "xnn_%s_conv_minmax_params" % DATATYPE.lower() |
| $XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t" |
| $_MM512_CVTEPX8_EPI32 = "_mm512_cvtepu8_epi32" if DATATYPE == "QU8" else "_mm512_cvtepi8_epi32" |
| $_MM256_PACKXS_EPI16 = "_mm256_packus_epi16" if DATATYPE == "QU8" else "_mm256_packs_epi16" |
| $_MM_PACKXS_EPI16 = "_mm_packus_epi16" if DATATYPE == "QU8" else "_mm_packs_epi16" |
| $_MM256_MIN_EPX8 = "_mm256_min_epu8" if DATATYPE == "QU8" else "_mm256_min_epi8" |
| $_MM256_MAX_EPX8 = "_mm256_max_epu8" if DATATYPE == "QU8" else "_mm256_max_epi8" |
| $_MM_MIN_EPX8 = "_mm_min_epu8" if DATATYPE == "QU8" else "_mm_min_epi8" |
| $_MM_MAX_EPX8 = "_mm_max_epu8" if DATATYPE == "QU8" else "_mm_max_epi8" |
| void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__avx512skx_mul32( |
| size_t channels, |
| size_t output_width, |
| const ${XINT8_T}** input, |
| const void* weights, |
| ${XINT8_T}* output, |
| size_t input_stride, |
| size_t output_increment, |
| size_t input_offset, |
| const ${XINT8_T}* zero, |
| const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_MSAN |
| { |
| assert(channels != 0); |
| assert(output_width != 0); |
| |
| $if DATATYPE != "QC8": |
| const __m512 vscale = _mm512_load_ps(params->${PARAMS_STRUCT}.scale); |
| const __m512 voutput_max_less_zero_point = _mm512_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point); |
| $if CHANNEL_TILE > 16: |
| const __m512i voutput_zero_point = _mm512_load_si512(params->${PARAMS_STRUCT}.output_zero_point); |
| const __m256i voutput_min = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min); |
| const __m256i vpermute_mask = _mm256_set_epi32(7, 3, 5, 1, 6, 2, 4, 0); |
| $else: |
| const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point); |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); |
| |
| $if DATATYPE == "QU8": |
| const __m512i vk_zero_point = _mm512_cvtepu16_epi32(_mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.kernel_zero_point)); |
| do { |
| $for K in range(KERNEL_TILE): |
| const ${XINT8_T}* i${K} = input[${K}]; |
| assert(i${K} != NULL); |
| if XNN_UNPREDICTABLE(i${K} != zero) { |
| i${K} = (const ${XINT8_T}*) ((uintptr_t) i${K} + input_offset); |
| } |
| input = (const ${XINT8_T}**) ((uintptr_t) input + input_stride); |
| |
| size_t c = channels; |
| const void* w = weights; |
| for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
| __m512i vacc${ABC[0:16]} = _mm512_loadu_si512(w); |
| $for C in range(16, CHANNEL_TILE, 16): |
| __m512i vacc${ABC[C:C+16]} = _mm512_loadu_si512((const void*) ((uintptr_t) w + ${C} * sizeof(int32_t))); |
| |
| $for K in range(KERNEL_TILE): |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C == 0: |
| const __m512i vi${K}x${ABC[0:16]} = ${_MM512_CVTEPX8_EPI32}(_mm_loadu_si128((const __m128i*) i${K})); |
| $else: |
| const __m512i vi${K}x${ABC[C:C+16]} = ${_MM512_CVTEPX8_EPI32}(_mm_loadu_si128((const __m128i*) (i${K} + ${C}))); |
| $if DATATYPE == "QU8": |
| const __m512i vk${K}x${ABC[C:C+16]} = _mm512_sub_epi32(_mm512_cvtepu8_epi32(_mm_load_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T})))), vk_zero_point); |
| $else: |
| const __m512i vk${K}x${ABC[C:C+16]} = _mm512_cvtepi8_epi32(_mm_load_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T})))); |
| i${K} += ${CHANNEL_TILE}; |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| vacc${ABC[C:C+16]} = _mm512_add_epi32(vacc${ABC[C:C+16]}, _mm512_mullo_epi32(vi${K}x${ABC[C:C+16]}, vk${K}x${ABC[C:C+16]})); |
| |
| w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T})); |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| __m512 vscaled${ABC[C:C+16]} = _mm512_cvtepi32_ps(vacc${ABC[C:C+16]}); |
| |
| $if DATATYPE == "QC8": |
| const __m512 vscale${ABC[0:16]} = _mm512_loadu_ps(w); |
| $for C in range(16, CHANNEL_TILE, 16): |
| const __m512 vscale${ABC[C:C+16]} = _mm512_loadu_ps((const void*) ((uintptr_t) w + ${C} * sizeof(float))); |
| w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(float)); |
| $for C in range(0, CHANNEL_TILE, 16): |
| vscaled${ABC[C:C+16]} = _mm512_mul_ps(vscaled${ABC[C:C+16]}, vscale${ABC[C:C+16]}); |
| $else: |
| $for C in range(0, CHANNEL_TILE, 16): |
| vscaled${ABC[C:C+16]} = _mm512_mul_ps(vscaled${ABC[C:C+16]}, vscale); |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| vscaled${ABC[C:C+16]} = _mm512_min_ps(vscaled${ABC[C:C+16]}, voutput_max_less_zero_point); |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| vacc${ABC[C:C+16]} = _mm512_cvtps_epi32(vscaled${ABC[C:C+16]}); |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 16 < CHANNEL_TILE: |
| __m512i vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]} = _mm512_adds_epi16(_mm512_packs_epi32(vacc${ABC[C:C+16]}, vacc${ABC[C+16:C+32]}), voutput_zero_point); |
| $elif CHANNEL_TILE > 16: |
| __m256i vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_adds_epi16(_mm256_packs_epi32(_mm512_castsi512_si256(vacc${ABC[C:C+16]}), _mm512_extracti32x8_epi32(vacc${ABC[C:C+16]}, 1)), _mm512_castsi512_si256(voutput_zero_point)); |
| $else: |
| __m256i vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_adds_epi16(_mm256_packs_epi32(_mm512_castsi512_si256(vacc${ABC[C:C+16]}), _mm512_extracti32x8_epi32(vacc${ABC[C:C+16]}, 1)), voutput_zero_point); |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 16 < CHANNEL_TILE: |
| const __m256i vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]} = _mm512_castsi512_si256(vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]}); |
| const __m256i vout${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]} = _mm512_extracti32x8_epi32(vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]}, 1); |
| const __m256i vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+12:C+16]}${ABC[C+28:C+32]} = ${_MM256_PACKXS_EPI16}(vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}, vout${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]}); |
| __m256i vout${ABC[C:C+32]} = _mm256_permutevar8x32_epi32(vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+12:C+16]}${ABC[C+28:C+32]}, vpermute_mask); |
| $else: |
| const __m128i vout${ABC[C:C+4]}${ABC[C+8:C+12]} = _mm256_castsi256_si128(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}); |
| const __m128i vout${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_extracti128_si256(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}, 1); |
| __m128i vout${ABC[C:C+16]} = _mm_shuffle_epi32(${_MM_PACKXS_EPI16}(vout${ABC[C:C+4]}${ABC[C+8:C+12]}, vout${ABC[C+4:C+8]}${ABC[C+12:C+16]}), _MM_SHUFFLE(3, 1, 2, 0)); |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 16 < CHANNEL_TILE: |
| vout${ABC[C:C+32]} = ${_MM256_MAX_EPX8}(vout${ABC[C:C+32]}, voutput_min); |
| $elif CHANNEL_TILE > 16: |
| vout${ABC[C:C+16]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+16]}, _mm256_castsi256_si128(voutput_min)); |
| $else: |
| vout${ABC[C:C+16]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+16]}, voutput_min); |
| |
| $if CHANNEL_TILE > 16: |
| _mm256_storeu_si256((__m256i*) output, vout${ABC[0:32]}); |
| $else: |
| _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); |
| $for C in range(16, CHANNEL_TILE, 16): |
| $if C + 16 < CHANNEL_TILE: |
| _mm256_storeu_si256((__m256i*) (output + ${C}), vout${ABC[C:C+32]}); |
| $else: |
| _mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]}); |
| output += ${CHANNEL_TILE}; |
| } |
| if XNN_UNLIKELY(c != 0) { |
| // Prepare mask for valid 8-bit elements (depends on nc). |
| const __mmask16 vmask = _cvtu32_mask16((uint32_t) ((UINT32_C(1) << (c & 15)) - UINT32_C(1))); |
| $if CHANNEL_TILE > 16: |
| const ${XINT8_T}* k = (const ${XINT8_T}*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t)); |
| ${"do " if CHANNEL_TILE > 16 else ""}{ |
| __m512i vacc${ABC[0:16]} = _mm512_loadu_si512(w); |
| |
| $for K in range(KERNEL_TILE): |
| |
| const __m512i vi${K}x${ABC[0:16]} = ${_MM512_CVTEPX8_EPI32}(_mm_loadu_si128((const __m128i*) i${K})); |
| $if DATATYPE == "QU8": |
| $if CHANNEL_TILE > 16: |
| $if K == 0: |
| const __m512i vk${K}x${ABC[0:16]} = _mm512_sub_epi32(_mm512_cvtepu8_epi32(_mm_loadu_si128((const __m128i*) k)), vk_zero_point); |
| $else: |
| const __m512i vk${K}x${ABC[0:16]} = _mm512_sub_epi32(_mm512_cvtepu8_epi32(_mm_loadu_si128((const __m128i*) (k + ${K * CHANNEL_TILE}))), vk_zero_point); |
| $else: |
| const __m512i vk${K}x${ABC[0:16]} = _mm512_sub_epi32(_mm512_cvtepu8_epi32(_mm_loadu_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T})))), vk_zero_point); |
| $else: |
| $if CHANNEL_TILE > 16: |
| $if K == 0: |
| const __m512i vk${K}x${ABC[0:16]} = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i*) k)); |
| $else: |
| const __m512i vk${K}x${ABC[0:16]} = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i*) (k + ${K * CHANNEL_TILE}))); |
| $else: |
| const __m512i vk${K}x${ABC[0:16]} = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T})))); |
| $if CHANNEL_TILE > 16: |
| i${K} += 16; |
| |
| vacc${ABC[0:16]} = _mm512_add_epi32(vacc${ABC[0:16]}, _mm512_mullo_epi32(vi${K}x${ABC[0:16]}, vk${K}x${ABC[0:16]})); |
| |
| $if CHANNEL_TILE > 16: |
| k += 16; |
| |
| __m512 vscaled${ABC[0:16]} = _mm512_cvtepi32_ps(vacc${ABC[0:16]}); |
| $if DATATYPE == "QC8": |
| const __m512 vscale${ABC[0:16]} = _mm512_loadu_ps((const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(${XINT8_T}))); |
| vscaled${ABC[0:16]} = _mm512_mul_ps(vscaled${ABC[0:16]}, vscale${ABC[0:16]}); |
| $else: |
| vscaled${ABC[0:16]} = _mm512_mul_ps(vscaled${ABC[0:16]}, vscale); |
| vscaled${ABC[0:16]} = _mm512_min_ps(vscaled${ABC[0:16]}, voutput_max_less_zero_point); |
| vacc${ABC[0:16]} = _mm512_cvtps_epi32(vscaled${ABC[0:16]}); |
| |
| $if CHANNEL_TILE > 16: |
| w = (const void*) ((uintptr_t) w + 16 * sizeof(int32_t)); |
| |
| $if CHANNEL_TILE > 16: |
| __m256i vout${ABC[0:4]}${ABC[8:12]}${ABC[4:8]}${ABC[12:16]} = _mm256_adds_epi16(_mm256_packs_epi32(_mm512_castsi512_si256(vacc${ABC[0:16]}), _mm512_extracti32x8_epi32(vacc${ABC[0:16]}, 1)), _mm512_castsi512_si256(voutput_zero_point)); |
| $else: |
| __m256i vout${ABC[0:4]}${ABC[8:12]}${ABC[4:8]}${ABC[12:16]} = _mm256_adds_epi16(_mm256_packs_epi32(_mm512_castsi512_si256(vacc${ABC[0:16]}), _mm512_extracti32x8_epi32(vacc${ABC[0:16]}, 1)), voutput_zero_point); |
| |
| const __m128i vout${ABC[0:4]}${ABC[8:12]} = _mm256_castsi256_si128(vout${ABC[0:4]}${ABC[8:12]}${ABC[4:8]}${ABC[12:16]}); |
| const __m128i vout${ABC[4:8]}${ABC[12:16]} = _mm256_extracti128_si256(vout${ABC[0:4]}${ABC[8:12]}${ABC[4:8]}${ABC[12:16]}, 1); |
| __m128i vout${ABC[0:16]} = _mm_shuffle_epi32(${_MM_PACKXS_EPI16}(vout${ABC[0:4]}${ABC[8:12]}, vout${ABC[4:8]}${ABC[12:16]}), _MM_SHUFFLE(3, 1, 2, 0)); |
| $if CHANNEL_TILE > 16: |
| vout${ABC[0:16]} = ${_MM_MAX_EPX8}(vout${ABC[0:16]}, _mm256_castsi256_si128(voutput_min)); |
| $else: |
| vout${ABC[0:16]} = ${_MM_MAX_EPX8}(vout${ABC[0:16]}, voutput_min); |
| |
| $if CHANNEL_TILE > 16: |
| if XNN_LIKELY(c >= 16) { |
| _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); |
| output += 16; |
| c -= 16; |
| } else { |
| _mm_mask_storeu_epi8(output, vmask, vout${ABC[0:16]}); |
| output = (${XINT8_T}*) ((uintptr_t) output + c); |
| c = 0; |
| } |
| $else: |
| _mm_mask_storeu_epi8(output, vmask, vout${ABC[0:16]}); |
| output = (${XINT8_T}*) ((uintptr_t) output + c); |
| }${" while (c != 0);" if CHANNEL_TILE > 16 else ""} |
| } |
| |
| output = (${XINT8_T}*) ((uintptr_t) output + output_increment); |
| } while (--output_width != 0); |
| } |