| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert SSE in [2, 4] |
| $assert not XOP or AVX |
| $assert not AVX or SSE == 4 |
| $assert REQUANTIZATION == "FP32" |
| $assert DATATYPE in ["QC8", "QS8", "QU8"] |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| $SSE_HEADER = {2: "emmintrin.h", 4: "smmintrin.h"}[SSE] |
| $assert CHANNEL_TILE % 8 == 0 |
| $assert CHANNEL_TILE >= 8 |
| $assert KERNEL_TILE >= 2 |
| #include <assert.h> |
| |
| $if XOP: |
| #if defined(__GNUC__) || defined(__clang__) |
| #include <x86intrin.h> |
| #else |
| #include <immintrin.h> |
| #include <ammintrin.h> |
| #endif |
| $else: |
| #include <${SSE_HEADER}> |
| |
| #include <xnnpack/dwconv.h> |
| #include <xnnpack/unaligned.h> |
| |
| |
| $PARAMS_STRUCT = REQUANTIZATION.lower() + "_" + ("sse4" if SSE == 4 and DATATYPE != "QU8" else "sse2") |
| $PARAMS_UNION = "xnn_%s_conv_minmax_params" % DATATYPE.lower() |
| $ISA = "xop" if XOP else "avx" if AVX else {2: "sse2", 4: "sse41"}[SSE] |
| $XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t" |
| void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${ISA}_mul16${"_add16" if ADD16 else ""}( |
| size_t channels, |
| size_t output_width, |
| const ${XINT8_T}** input, |
| const void* weights, |
| ${XINT8_T}* output, |
| size_t input_stride, |
| size_t output_increment, |
| size_t input_offset, |
| const ${XINT8_T}* zero, |
| const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| { |
| assert(channels != 0); |
| assert(output_width != 0); |
| |
| do { |
| $for K in range(KERNEL_TILE): |
| const ${XINT8_T}* i${K} = input[${K}]; |
| assert(i${K} != NULL); |
| if XNN_UNPREDICTABLE(i${K} != zero) { |
| i${K} = (const ${XINT8_T}*) ((uintptr_t) i${K} + input_offset); |
| } |
| input = (const ${XINT8_T}**) ((uintptr_t) input + input_stride); |
| |
| size_t c = channels; |
| const void* w = weights; |
| $if DATATYPE == "QU8": |
| const __m128i vk_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.kernel_zero_point); |
| for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
| __m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w); |
| $for C in range(4, CHANNEL_TILE, 4): |
| __m128i vacc${ABC[C:C+4]} = _mm_loadu_si128((const __m128i*) ((const int32_t*) w + ${C})); |
| |
| $for K in range(KERNEL_TILE): |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| $if C == 0: |
| const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K}); |
| $else: |
| const __m128i vi${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) (i${K} + ${C})); |
| $if SSE == 4: |
| $if DATATYPE == "QU8": |
| const __m128i vxi${K}x${ABC[C:C+8]} = _mm_cvtepu8_epi16(vi${K}x${ABC[C:C+8]}); |
| $else: |
| const __m128i vxi${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[C:C+8]}); |
| const __m128i vk${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T}))); |
| $if SSE == 4: |
| $if DATATYPE == "QU8": |
| const __m128i vxk${K}x${ABC[C:C+8]} = _mm_sub_epi16(_mm_cvtepu8_epi16(vk${K}x${ABC[C:C+8]}), vk_zero_point); |
| $else: |
| const __m128i vxk${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[C:C+8]}); |
| i${K} += ${CHANNEL_TILE}; |
| |
| $if SSE < 4: |
| $if DATATYPE == "QU8": |
| $if K == 0: |
| const __m128i vzero = _mm_setzero_si128(); |
| $for C in range(0, CHANNEL_TILE, 8): |
| const __m128i vxi${K}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vi${K}x${ABC[C:C+8]}, vzero); |
| const __m128i vxk${K}x${ABC[C:C+8]} = _mm_sub_epi16(_mm_unpacklo_epi8(vk${K}x${ABC[C:C+8]}, vzero), vk_zero_point); |
| $else: |
| $for C in range(0, CHANNEL_TILE, 8): |
| const __m128i vxi${K}x${ABC[C:C+8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vi${K}x${ABC[C:C+8]}, vi${K}x${ABC[C:C+8]}), 8); |
| const __m128i vxk${K}x${ABC[C:C+8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vk${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), 8); |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| $if DATATYPE == "QU8" or SSE < 4 and not ADD16: |
| const __m128i vprod${K}x${ABC[C:C+8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}); |
| const __m128i vprod${K}x${ABC[C:C+8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}); |
| $elif K == 0: |
| __m128i vprod${ABC[C:C+8]} = _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}); |
| $elif K % 2 == 0 or K + 1 == KERNEL_TILE or not ADD16: |
| vprod${ABC[C:C+8]} = _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}); |
| $elif XOP: |
| vprod${ABC[C:C+8]} = _mm_macc_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}, vprod${ABC[C:C+8]}); |
| $else: |
| vprod${ABC[C:C+8]} = _mm_add_epi16(vprod${ABC[C:C+8]}, _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]})); |
| |
| $if not ADD16 or K % 2 == 1 or K + 1 == KERNEL_TILE: |
| $for C in range(0, CHANNEL_TILE, 8): |
| $if DATATYPE == "QU8" or SSE < 4 and not ADD16: |
| vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, _mm_unpacklo_epi16(vprod${K}x${ABC[C:C+8]}lo, vprod${K}x${ABC[C:C+8]}hi)); |
| vacc${ABC[C+4:C+8]} = _mm_add_epi32(vacc${ABC[C+4:C+8]}, _mm_unpackhi_epi16(vprod${K}x${ABC[C:C+8]}lo, vprod${K}x${ABC[C:C+8]}hi)); |
| $elif SSE < 4: |
| const __m128i vsignprod${K}x${ABC[C:C+8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vprod${ABC[C:C+8]}); |
| vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, _mm_unpacklo_epi16(vprod${ABC[C:C+8]}, vsignprod${K}x${ABC[C:C+8]})); |
| vacc${ABC[C+4:C+8]} = _mm_add_epi32(vacc${ABC[C+4:C+8]}, _mm_unpackhi_epi16(vprod${ABC[C:C+8]}, vsignprod${K}x${ABC[C:C+8]})); |
| $else: |
| vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, _mm_cvtepi16_epi32(vprod${ABC[C:C+8]})); |
| vacc${ABC[C+4:C+8]} = _mm_add_epi32(vacc${ABC[C+4:C+8]}, _mm_srai_epi32(_mm_unpackhi_epi16(vprod${ABC[C:C+8]}, vprod${ABC[C:C+8]}), 16)); |
| |
| w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T})); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| __m128 vscaled${ABC[C:C+4]} = _mm_cvtepi32_ps(vacc${ABC[C:C+4]}); |
| |
| $if DATATYPE == "QC8": |
| const __m128 vscale${ABC[0:4]} = _mm_loadu_ps((const float*) w); |
| $for C in range(4, CHANNEL_TILE, 4): |
| const __m128 vscale${ABC[C:C+4]} = _mm_loadu_ps((const float*) w + ${C}); |
| w = (const void*) ((const float*) w + ${CHANNEL_TILE}); |
| $for C in range(0, CHANNEL_TILE, 4): |
| vscaled${ABC[C:C+4]} = _mm_mul_ps(vscaled${ABC[C:C+4]}, vscale${ABC[C:C+4]}); |
| $else: |
| const __m128 vscale = _mm_load_ps(params->${PARAMS_STRUCT}.scale); |
| $for C in range(0, CHANNEL_TILE, 4): |
| vscaled${ABC[C:C+4]} = _mm_mul_ps(vscaled${ABC[C:C+4]}, vscale); |
| |
| const __m128 voutput_max_less_zero_point = _mm_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point); |
| $for C in range(0, CHANNEL_TILE, 4): |
| vscaled${ABC[C:C+4]} = _mm_min_ps(vscaled${ABC[C:C+4]}, voutput_max_less_zero_point); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| vacc${ABC[C:C+4]} = _mm_cvtps_epi32(vscaled${ABC[C:C+4]}); |
| |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point); |
| $for C in range(0, CHANNEL_TILE, 8): |
| __m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[C:C+4]}, vacc${ABC[C+4:C+8]}), voutput_zero_point); |
| |
| $if DATATYPE == "QU8": |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| __m128i vout${ABC[C:C+16]} = _mm_packus_epi16(vout${ABC[C:C+8]}, vout${ABC[C+8:C+16]}); |
| $else: |
| __m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_packus_epi16(vout${ABC[C:C+8]}, vout${ABC[C:C+8]}); |
| |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| vout${ABC[C:C+16]} = _mm_max_epu8(vout${ABC[C:C+16]}, voutput_min); |
| $else: |
| vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_max_epu8(vout${ABC[C:C+8]}${ABC[C:C+8]}, voutput_min); |
| $else: |
| $if SSE < 4: |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); |
| $for C in range(0, CHANNEL_TILE, 8): |
| vout${ABC[C:C+8]} = _mm_max_epi16(vout${ABC[C:C+8]}, voutput_min); |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| __m128i vout${ABC[C:C+16]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C+8:C+16]}); |
| $else: |
| __m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C:C+8]}); |
| |
| $if SSE == 4: |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| vout${ABC[C:C+16]} = _mm_max_epi8(vout${ABC[C:C+16]}, voutput_min); |
| $else: |
| vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_max_epi8(vout${ABC[C:C+8]}${ABC[C:C+8]}, voutput_min); |
| |
| $if CHANNEL_TILE > 8: |
| _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); |
| $for C in range(16, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| _mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]}); |
| output += ${CHANNEL_TILE}; |
| } |
| if XNN_UNLIKELY(c != 0) { |
| $if CHANNEL_TILE > 8: |
| const ${XINT8_T}* k = (const ${XINT8_T}*) ((const int32_t*) w + ${CHANNEL_TILE}); |
| ${"do " if CHANNEL_TILE > 8 else ""}{ |
| __m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w); |
| __m128i vacc${ABC[4:8]} = _mm_loadu_si128((const __m128i*) ((const int32_t*) w + 4)); |
| |
| $for K in range(KERNEL_TILE): |
| |
| const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K}); |
| $if SSE == 4: |
| $if DATATYPE == "QU8": |
| const __m128i vxi${K}x${ABC[0:8]} = _mm_cvtepu8_epi16(vi${K}x${ABC[0:8]}); |
| $else: |
| const __m128i vxi${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[0:8]}); |
| $if CHANNEL_TILE > 8: |
| $if K == 0: |
| const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) k); |
| $else: |
| const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE})); |
| $else: |
| const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T}))); |
| $if SSE == 4: |
| $if DATATYPE == "QU8": |
| const __m128i vxk${K}x${ABC[0:8]} = _mm_sub_epi16(_mm_cvtepu8_epi16(vk${K}x${ABC[0:8]}), vk_zero_point); |
| $else: |
| const __m128i vxk${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[0:8]}); |
| $if CHANNEL_TILE > 8: |
| i${K} += 8; |
| |
| $if SSE < 4: |
| $if DATATYPE == "QU8": |
| $if K == 0: |
| const __m128i vzero = _mm_setzero_si128(); |
| const __m128i vxi${K}x${ABC[0:8]} = _mm_unpacklo_epi8(vi${K}x${ABC[0:8]}, vzero); |
| const __m128i vxk${K}x${ABC[0:8]} = _mm_sub_epi16(_mm_unpacklo_epi8(vk${K}x${ABC[0:8]}, vzero), vk_zero_point); |
| $else: |
| const __m128i vxi${K}x${ABC[0:8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vi${K}x${ABC[0:8]}, vi${K}x${ABC[0:8]}), 8); |
| const __m128i vxk${K}x${ABC[0:8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vk${K}x${ABC[0:8]}, vk${K}x${ABC[0:8]}), 8); |
| |
| $if DATATYPE == "QU8" or SSE < 4 and not ADD16: |
| const __m128i vprod${K}x${ABC[0:8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}); |
| const __m128i vprod${K}x${ABC[0:8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}); |
| $elif K == 0: |
| __m128i vprod${ABC[0:8]} = _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}); |
| $elif K % 2 == 0 or K + 1 == KERNEL_TILE or not ADD16: |
| vprod${ABC[0:8]} = _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}); |
| $elif XOP: |
| vprod${ABC[0:8]} = _mm_macc_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}, vprod${ABC[0:8]}); |
| $else: |
| vprod${ABC[0:8]} = _mm_add_epi16(vprod${ABC[0:8]}, _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]})); |
| |
| $if not ADD16 or K % 2 == 1 or K + 1 == KERNEL_TILE: |
| $if DATATYPE == "QU8" or SSE < 4 and not ADD16: |
| vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_unpacklo_epi16(vprod${K}x${ABC[0:8]}lo, vprod${K}x${ABC[0:8]}hi)); |
| vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_unpackhi_epi16(vprod${K}x${ABC[0:8]}lo, vprod${K}x${ABC[0:8]}hi)); |
| $elif SSE < 4: |
| const __m128i vsignprod${K}x${ABC[0:8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vprod${ABC[0:8]}); |
| vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_unpacklo_epi16(vprod${ABC[0:8]}, vsignprod${K}x${ABC[0:8]})); |
| vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_unpackhi_epi16(vprod${ABC[0:8]}, vsignprod${K}x${ABC[0:8]})); |
| $else: |
| vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_cvtepi16_epi32(vprod${ABC[0:8]})); |
| vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_srai_epi32(_mm_unpackhi_epi16(vprod${ABC[0:8]}, vprod${ABC[0:8]}), 16)); |
| |
| $if CHANNEL_TILE > 8: |
| k += 8; |
| |
| __m128 vscaled${ABC[0:4]} = _mm_cvtepi32_ps(vacc${ABC[0:4]}); |
| __m128 vscaled${ABC[4:8]} = _mm_cvtepi32_ps(vacc${ABC[4:8]}); |
| |
| $if DATATYPE == "QC8": |
| const __m128 vscale${ABC[0:4]} = _mm_loadu_ps((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(${XINT8_T}))); |
| const __m128 vscale${ABC[4:8]} = _mm_loadu_ps((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(${XINT8_T}) + 4 * sizeof(float))); |
| vscaled${ABC[0:4]} = _mm_mul_ps(vscaled${ABC[0:4]}, vscale${ABC[0:4]}); |
| vscaled${ABC[4:8]} = _mm_mul_ps(vscaled${ABC[4:8]}, vscale${ABC[4:8]}); |
| $else: |
| const __m128 vscale = _mm_load_ps(params->${PARAMS_STRUCT}.scale); |
| vscaled${ABC[0:4]} = _mm_mul_ps(vscaled${ABC[0:4]}, vscale); |
| vscaled${ABC[4:8]} = _mm_mul_ps(vscaled${ABC[4:8]}, vscale); |
| |
| const __m128 voutput_max_less_zero_point = _mm_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point); |
| vscaled${ABC[0:4]} = _mm_min_ps(vscaled${ABC[0:4]}, voutput_max_less_zero_point); |
| vscaled${ABC[4:8]} = _mm_min_ps(vscaled${ABC[4:8]}, voutput_max_less_zero_point); |
| |
| vacc${ABC[0:4]} = _mm_cvtps_epi32(vscaled${ABC[0:4]}); |
| vacc${ABC[4:8]} = _mm_cvtps_epi32(vscaled${ABC[4:8]}); |
| |
| $if CHANNEL_TILE > 8: |
| w = (const void*) ((const int32_t*) w + 8); |
| |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point); |
| __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point); |
| |
| $if DATATYPE == "QU8": |
| __m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packus_epi16(vout${ABC[0:8]}, vout${ABC[0:8]}); |
| |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_max_epu8(vout${ABC[0:8]}${ABC[0:8]}, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min)); |
| $else: |
| $if SSE < 4: |
| vout${ABC[0:8]} = _mm_max_epi16(vout${ABC[0:8]}, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min)); |
| |
| __m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]}); |
| |
| $if SSE == 4: |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_max_epi8(vout${ABC[0:8]}${ABC[0:8]}, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min)); |
| |
| $if CHANNEL_TILE > 8: |
| if XNN_LIKELY(c >= 8) { |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); |
| output += 8; |
| c -= 8; |
| } else { |
| if (c & 4) { |
| unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (c & 2) { |
| unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (c & 1) { |
| $if SSE == 4: |
| *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| $else: |
| *output = (${XINT8_T}) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| output += 1; |
| } |
| c = 0; |
| } |
| $else: |
| if (c & 4) { |
| unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (c & 2) { |
| unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (c & 1) { |
| $if SSE == 4: |
| *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| $else: |
| *output = (${XINT8_T}) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| output += 1; |
| } |
| }${" while (c != 0);" if CHANNEL_TILE > 8 else ""} |
| } |
| |
| output = (${XINT8_T}*) ((uintptr_t) output + output_increment); |
| } while (--output_width != 0); |
| } |