blob: 3178d90d7c15c45c5a172ef5f5566d009030e8db [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert DATATYPE in ["QS8", "QU8"]
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert ROW_TILE >= 3
$assert ROW_SUBTILE >= 3
$assert ROW_SUBTILE <= ROW_TILE
$assert REQUANTIZATION in ["FP32", "RNDNU"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/gavgpool.h>
$if ARMV8:
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/math.h>
$PARAMS_STRUCT = REQUANTIZATION.lower() + "_" + ("neonv8" if ARMV8 else "neon")
$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE]
$XINT8X8_T = {"QS8": "int8x8_t", "QU8": "uint8x8_t"}[DATATYPE]
$XINT8X16_T = {"QS8": "int8x16_t", "QU8": "uint8x16_t"}[DATATYPE]
$XINT16X8_T = {"QS8": "int16x8_t", "QU8": "uint16x8_t"}[DATATYPE]
$VLD1_X8 = {"QS8": "vld1_s8", "QU8": "vld1_u8"}[DATATYPE]
$VLD1_DUP_X8 = {"QS8": "vld1_dup_s8", "QU8": "vld1_dup_u8"}[DATATYPE]
$VLD1Q_DUP_X8 = {"QS8": "vld1q_dup_s8", "QU8": "vld1q_dup_u8"}[DATATYPE]
$VST1_X8 = {"QS8": "vst1_s8", "QU8": "vst1_u8"}[DATATYPE]
$VST1Q_X8 = {"QS8": "vst1q_s8", "QU8": "vst1q_u8"}[DATATYPE]
$VST1_LANE_X8 = {"QS8": "vst1_lane_s8", "QU8": "vst1_lane_u8"}[DATATYPE]
$VADDL_X8 = {"QS8": "vaddl_s8", "QU8": "vaddl_u8"}[DATATYPE]
$VADDW_X8 = {"QS8": "vaddw_s8", "QU8": "vaddw_u8"}[DATATYPE]
$VMIN_X8 = {"QS8": "vmin_s8", "QU8": "vmin_u8"}[DATATYPE]
$VMINQ_X8 = {"QS8": "vminq_s8", "QU8": "vminq_u8"}[DATATYPE]
$VMAX_X8 = {"QS8": "vmax_s8", "QU8": "vmax_u8"}[DATATYPE]
$VMAXQ_X8 = {"QS8": "vmaxq_s8", "QU8": "vmaxq_u8"}[DATATYPE]
$VEXT_X8 = {"QS8": "vext_s8", "QU8": "vext_u8"}[DATATYPE]
$VQMOVXN_S16 = {"QS8": "vqmovn_s16", "QU8": "vqmovun_s16"}[DATATYPE]
$VQMOVXN_HIGH_S16 = {"QS8": "vqmovn_high_s16", "QU8": "vqmovun_high_s16"}[DATATYPE]
$VGET_LOW_X8 = {"QS8": "vget_low_s8", "QU8": "vget_low_u8"}[DATATYPE]
$VCOMBINE_X8 = {"QS8": "vcombine_s8", "QU8": "vcombine_u8"}[DATATYPE]
$VREINTERPRET_U32_X8 = {"QS8": "vreinterpret_u32_s8", "QU8": "vreinterpret_u32_u8"}[DATATYPE]
$VREINTERPRET_U16_X8 = {"QS8": "vreinterpret_u16_s8", "QU8": "vreinterpret_u16_u8"}[DATATYPE]
$ISA = "neonv8" if ARMV8 else "neon"
void xnn_${DATATYPE.lower()}_gavgpool_minmax_${REQUANTIZATION.lower()}_ukernel_${ROW_TILE}p${ROW_SUBTILE}x__${ISA}_c${CHANNEL_TILE}(
size_t rows,
size_t channels,
const ${XINT8_T}* input,
size_t input_stride,
const ${XINT8_T}* zero,
int32_t* buffer,
${XINT8_T}* output,
const union xnn_${DATATYPE.lower()}_avgpool_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(rows > ${ROW_TILE});
assert(channels != 0);
const ${XINT8_T}* i0 = input;
$for M in range(1, ROW_TILE):
const ${XINT8_T}* i${M} = (const ${XINT8_T}*) ((uintptr_t) i${M-1} + input_stride);
$if CHANNEL_TILE <= 16:
const size_t input_increment = ${ROW_TILE} * input_stride - round_up_po2(channels, ${CHANNEL_TILE}) * sizeof(${XINT8_T});
$else:
const size_t input_increment = ${ROW_TILE} * input_stride - round_up_po2(channels, 8) * sizeof(${XINT8_T});
const int32x4_t vinit_bias = vld1q_dup_s32(&params->${PARAMS_STRUCT}.init_bias);
int32_t* b = buffer;
size_t c = channels;
for (; ${"c >= %d" % CHANNEL_TILE if CHANNEL_TILE > 16 else "c != 0"}; ${("c -= %d" if CHANNEL_TILE > 16 else "c = doz(c, %d)") % CHANNEL_TILE}) {
$for M in range(2):
$for C in range(0, CHANNEL_TILE, 8):
const ${XINT8X8_T} vi${M}x${ABC[C:C+8]} = ${VLD1_X8}(i${M}); i${M} += 8;
$for C in range(0, CHANNEL_TILE, 8):
const ${XINT8X8_T} vi2x${ABC[C:C+8]} = ${VLD1_X8}(i2); i2 += 8;
${XINT16X8_T} vsum${ABC[C:C+8]} = ${VADDL_X8}(vi0x${ABC[C:C+8]}, vi1x${ABC[C:C+8]});
$for M in range(2, ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if M + 1 != ROW_TILE:
const ${XINT8X8_T} vi${M+1}x${ABC[C:C+8]} = ${VLD1_X8}(i${M+1}); i${M+1} += 8;
vsum${ABC[C:C+8]} = ${VADDW_X8}(vsum${ABC[C:C+8]}, vi${M}x${ABC[C:C+8]});
$for C in range(0, CHANNEL_TILE, 8):
$if DATATYPE == "QS8":
const int32x4_t vacc${ABC[C:C+4]} = vaddw_s16(vinit_bias, vget_low_s16(vsum${ABC[C:C+8]}));
const int32x4_t vacc${ABC[C+4:C+8]} = vaddw_s16(vinit_bias, vget_high_s16(vsum${ABC[C:C+8]}));
$else:
const int32x4_t vacc${ABC[C:C+4]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vinit_bias), vget_low_u16(vsum${ABC[C:C+8]})));
const int32x4_t vacc${ABC[C+4:C+8]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vinit_bias), vget_high_u16(vsum${ABC[C:C+8]})));
$for C in range(0, CHANNEL_TILE, 4):
vst1q_s32(b, vacc${ABC[C:C+4]}); b += 4;
}
$if CHANNEL_TILE > 16:
if XNN_UNLIKELY(c != 0) {
do {
$for M in range(3):
const ${XINT8X8_T} vi${M}x${ABC[0:8]} = ${VLD1_X8}(i${M}); i${M} += 8;
${XINT16X8_T} vsum${ABC[0:8]} = ${VADDL_X8}(vi0x${ABC[0:8]}, vi1x${ABC[0:8]});
$for M in range(2, ROW_TILE):
$if M + 1 != ROW_TILE:
const ${XINT8X8_T} vi${M+1}x${ABC[0:8]} = ${VLD1_X8}(i${M+1}); i${M+1} += 8;
vsum${ABC[0:8]} = ${VADDW_X8}(vsum${ABC[0:8]}, vi${M}x${ABC[0:8]});
$if DATATYPE == "QS8":
const int32x4_t vacc${ABC[0:4]} = vaddw_s16(vinit_bias, vget_low_s16(vsum${ABC[0:8]}));
const int32x4_t vacc${ABC[4:8]} = vaddw_s16(vinit_bias, vget_high_s16(vsum${ABC[0:8]}));
$else:
const int32x4_t vacc${ABC[0:4]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vinit_bias), vget_low_u16(vsum${ABC[0:8]})));
const int32x4_t vacc${ABC[4:8]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vinit_bias), vget_high_u16(vsum${ABC[0:8]})));
vst1q_s32(b, vacc${ABC[0:4]}); b += 4;
vst1q_s32(b, vacc${ABC[4:8]}); b += 4;
c = doz(c, 8);
} while (c != 0);
}
for (rows -= ${ROW_TILE}; rows > ${ROW_SUBTILE}; rows -= ${ROW_SUBTILE}) {
$for M in range(ROW_SUBTILE):
i${M} = (const ${XINT8_T}*) ((uintptr_t) i${M + ROW_TILE - ROW_SUBTILE} + input_increment);
int32_t* b = buffer;
size_t c = channels;
for (; ${"c >= %d" % CHANNEL_TILE if CHANNEL_TILE > 16 else "c != 0"}; ${("c -= %d" if CHANNEL_TILE > 16 else "c = doz(c, %d)") % CHANNEL_TILE}) {
$for M in range(2):
$for C in range(0, CHANNEL_TILE, 8):
const ${XINT8X8_T} vi${M}x${ABC[C:C+8]} = ${VLD1_X8}(i${M}); i${M} += 8;
$for C in range(0, CHANNEL_TILE, 8):
const ${XINT8X8_T} vi2x${ABC[C:C+8]} = ${VLD1_X8}(i2); i2 += 8;
${XINT16X8_T} vsum${ABC[C:C+8]} = ${VADDL_X8}(vi0x${ABC[C:C+8]}, vi1x${ABC[C:C+8]});
$for M in range(2, ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if M + 1 != ROW_TILE:
const ${XINT8X8_T} vi${M+1}x${ABC[C:C+8]} = ${VLD1_X8}(i${M+1}); i${M+1} += 8;
$else:
$if C == 0:
int32x4_t vacc${ABC[C:C+4]} = vld1q_s32(b);
$else:
int32x4_t vacc${ABC[C:C+4]} = vld1q_s32(b + ${C});
int32x4_t vacc${ABC[C+4:C+8]} = vld1q_s32(b + ${C+4});
vsum${ABC[C:C+8]} = ${VADDW_X8}(vsum${ABC[C:C+8]}, vi${M}x${ABC[C:C+8]});
$for C in range(0, CHANNEL_TILE, 8):
$if DATATYPE == "QS8":
vacc${ABC[C:C+4]} = vaddw_s16(vacc${ABC[C:C+4]}, vget_low_s16(vsum${ABC[C:C+8]}));
vacc${ABC[C+4:C+8]} = vaddw_s16(vacc${ABC[C+4:C+8]}, vget_high_s16(vsum${ABC[C:C+8]}));
$else:
vacc${ABC[C:C+4]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[C:C+4]}), vget_low_u16(vsum${ABC[C:C+8]})));
vacc${ABC[C+4:C+8]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[C+4:C+8]}), vget_high_u16(vsum${ABC[C:C+8]})));
$for C in range(0, CHANNEL_TILE, 4):
vst1q_s32(b, vacc${ABC[C:C+4]}); b += 4;
}
$if CHANNEL_TILE > 16:
if XNN_UNLIKELY(c != 0) {
do {
$for M in range(3):
const ${XINT8X8_T} vi${M}x${ABC[0:8]} = ${VLD1_X8}(i${M}); i${M} += 8;
${XINT16X8_T} vsum${ABC[0:8]} = ${VADDL_X8}(vi0x${ABC[0:8]}, vi1x${ABC[0:8]});
$for M in range(2, ROW_TILE):
$if M + 1 != ROW_TILE:
const ${XINT8X8_T} vi${M+1}x${ABC[0:8]} = ${VLD1_X8}(i${M+1}); i${M+1} += 8;
$else:
int32x4_t vacc${ABC[0:4]} = vld1q_s32(b);
int32x4_t vacc${ABC[4:8]} = vld1q_s32(b + 4);
vsum${ABC[0:8]} = ${VADDW_X8}(vsum${ABC[0:8]}, vi${M}x${ABC[0:8]});
$if DATATYPE == "QS8":
vacc${ABC[0:4]} = vaddw_s16(vacc${ABC[0:4]}, vget_low_s16(vsum${ABC[0:8]}));
vacc${ABC[4:8]} = vaddw_s16(vacc${ABC[4:8]}, vget_high_s16(vsum${ABC[0:8]}));
$else:
vacc${ABC[0:4]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[0:4]}), vget_low_u16(vsum${ABC[0:8]})));
vacc${ABC[4:8]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[4:8]}), vget_high_u16(vsum${ABC[0:8]})));
vst1q_s32(b, vacc${ABC[0:4]}); b += 4;
vst1q_s32(b, vacc${ABC[4:8]}); b += 4;
c = doz(c, 8);
} while (c != 0);
}
}
i0 = (const ${XINT8_T}*) ((uintptr_t) i${ROW_TILE - ROW_SUBTILE} + input_increment);
$for M in range(1, ROW_SUBTILE):
i${M} = (const ${XINT8_T}*) ((uintptr_t) i${M + ROW_TILE - ROW_SUBTILE} + input_increment);
$if M % 2 == 1:
if XNN_UNPREDICTABLE(rows < ${M+1}) {
i${M} = zero;
}
$else:
if XNN_UNPREDICTABLE(rows <= ${M}) {
i${M} = zero;
}
$if REQUANTIZATION == "FP32":
const float32x4_t vscale = vld1q_dup_f32(&params->${PARAMS_STRUCT}.scale);
$if ARMV8:
const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->fp32_neonv8.output_zero_point);
$else:
const float32x4_t vmagic_bias = vld1q_dup_f32(&params->fp32_neon.magic_bias);
const int32x4_t vmagic_bias_less_output_zero_point = vld1q_dup_s32(&params->fp32_neon.magic_bias_less_output_zero_point);
$elif REQUANTIZATION == "RNDNU":
const int32x4_t vleft_pre_shift = vld1q_dup_s32(&params->rndnu_neon.left_pre_shift);
const int32x4_t vmultiplier = vld1q_dup_s32(&params->rndnu_neon.multiplier);
const int32x4_t vleft_post_shift = vld1q_dup_s32(&params->rndnu_neon.left_post_shift);
const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->rndnu_neon.output_zero_point);
$if CHANNEL_TILE > 8:
const ${XINT8X16_T} voutput_min = ${VLD1Q_DUP_X8}(&params->${PARAMS_STRUCT}.output_min);
const ${XINT8X16_T} voutput_max = ${VLD1Q_DUP_X8}(&params->${PARAMS_STRUCT}.output_max);
$else:
const ${XINT8X8_T} voutput_min = ${VLD1_DUP_X8}(&params->${PARAMS_STRUCT}.output_min);
const ${XINT8X8_T} voutput_max = ${VLD1_DUP_X8}(&params->${PARAMS_STRUCT}.output_max);
for (; channels >= ${CHANNEL_TILE}; channels -= ${CHANNEL_TILE}) {
$for M in range(2):
$for C in range(0, CHANNEL_TILE, 8):
const ${XINT8X8_T} vi${M}x${ABC[C:C+8]} = ${VLD1_X8}(i${M}); i${M} += 8;
$for C in range(0, CHANNEL_TILE, 8):
const ${XINT8X8_T} vi2x${ABC[C:C+8]} = ${VLD1_X8}(i2); i2 += 8;
${XINT16X8_T} vsum${ABC[C:C+8]} = ${VADDL_X8}(vi0x${ABC[C:C+8]}, vi1x${ABC[C:C+8]});
$for M in range(2, ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if M + 1 != ROW_TILE:
const ${XINT8X8_T} vi${M+1}x${ABC[C:C+8]} = ${VLD1_X8}(i${M+1}); i${M+1} += 8;
$else:
int32x4_t vacc${ABC[C:C+4]} = vld1q_s32(buffer); buffer += 4;
int32x4_t vacc${ABC[C+4:C+8]} = vld1q_s32(buffer); buffer += 4;
vsum${ABC[C:C+8]} = ${VADDW_X8}(vsum${ABC[C:C+8]}, vi${M}x${ABC[C:C+8]});
$for C in range(0, CHANNEL_TILE, 8):
$if DATATYPE == "QS8":
vacc${ABC[C:C+4]} = vaddw_s16(vacc${ABC[C:C+4]}, vget_low_s16(vsum${ABC[C:C+8]}));
vacc${ABC[C+4:C+8]} = vaddw_s16(vacc${ABC[C+4:C+8]}, vget_high_s16(vsum${ABC[C:C+8]}));
$else:
vacc${ABC[C:C+4]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[C:C+4]}), vget_low_u16(vsum${ABC[C:C+8]})));
vacc${ABC[C+4:C+8]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[C+4:C+8]}), vget_high_u16(vsum${ABC[C:C+8]})));
$if REQUANTIZATION == "FP32":
$for C in range(0, CHANNEL_TILE, 4):
float32x4_t vfpacc${ABC[C:C+4]} = vcvtq_f32_s32(vacc${ABC[C:C+4]});
$for C in range(0, CHANNEL_TILE, 4):
vfpacc${ABC[C:C+4]} = vmulq_f32(vfpacc${ABC[C:C+4]}, vscale);
$if ARMV8:
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vcvtnq_s32_f32(vfpacc${ABC[C:C+4]});
$else:
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vreinterpretq_s32_f32(vaddq_f32(vfpacc${ABC[C:C+4]}, vmagic_bias));
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vqsubq_s32(vacc${ABC[C:C+4]}, vmagic_bias_less_output_zero_point);
$elif REQUANTIZATION == "RNDNU":
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vqshlq_s32(vacc${ABC[C:C+4]}, vleft_pre_shift);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vqdmulhq_s32(vacc${ABC[C:C+4]}, vmultiplier);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vrshlq_s32(vacc${ABC[C:C+4]}, vleft_post_shift);
#if XNN_ARCH_ARM64
$for C in range(0, CHANNEL_TILE, 8):
int16x8_t vacc${ABC[C:C+8]} = vqmovn_high_s32(vqmovn_s32(vacc${ABC[C:C+4]}), vacc${ABC[C+4:C+8]});
#else // !XNN_ARCH_ARM64
$for C in range(0, CHANNEL_TILE, 8):
int16x8_t vacc${ABC[C:C+8]} = vcombine_s16(vqmovn_s32(vacc${ABC[C:C+4]}), vqmovn_s32(vacc${ABC[C+4:C+8]}));
#endif // !XNN_ARCH_ARM64
$if REQUANTIZATION != "FP32" or ARMV8:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = vqaddq_s16(vacc${ABC[C:C+8]}, voutput_zero_point);
#if XNN_ARCH_ARM64
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
${XINT8X16_T} vout${ABC[C:C+16]} = ${VQMOVXN_HIGH_S16}(${VQMOVXN_S16}(vacc${ABC[C:C+8]}), vacc${ABC[C+8:C+16]});
$else:
${XINT8X8_T} vout${ABC[C:C+8]} = ${VQMOVXN_S16}(vacc${ABC[C:C+8]});
#else // !XNN_ARCH_ARM64
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
${XINT8X16_T} vout${ABC[C:C+16]} = ${VCOMBINE_X8}(${VQMOVXN_S16}(vacc${ABC[C:C+8]}), ${VQMOVXN_S16}(vacc${ABC[C+8:C+16]}));
$else:
${XINT8X8_T} vout${ABC[C:C+8]} = ${VQMOVXN_S16}(vacc${ABC[C:C+8]});
#endif // !XNN_ARCH_ARM64
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = ${VMAXQ_X8}(vout${ABC[C:C+16]}, voutput_min);
$elif CHANNEL_TILE > 8:
vout${ABC[C:C+8]} = ${VMAX_X8}(vout${ABC[C:C+8]}, ${VGET_LOW_X8}(voutput_min));
$else:
vout${ABC[C:C+8]} = ${VMAX_X8}(vout${ABC[C:C+8]}, voutput_min);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = ${VMINQ_X8}(vout${ABC[C:C+16]}, voutput_max);
$elif CHANNEL_TILE > 8:
vout${ABC[C:C+8]} = ${VMIN_X8}(vout${ABC[C:C+8]}, ${VGET_LOW_X8}(voutput_max));
$else:
vout${ABC[C:C+8]} = ${VMIN_X8}(vout${ABC[C:C+8]}, voutput_max);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
${VST1Q_X8}(output, vout${ABC[C:C+16]}); output += 16;
$else:
${VST1_X8}(output, vout${ABC[C:C+8]}); output += 8;
}
if XNN_UNLIKELY(channels != 0) {
${"do " if CHANNEL_TILE > 8 else ""}{
$for M in range(3):
$if CHANNEL_TILE > 8:
const ${XINT8X8_T} vi${M}x${ABC[0:8]} = ${VLD1_X8}(i${M}); i${M} += 8;
$else:
const ${XINT8X8_T} vi${M}x${ABC[0:8]} = ${VLD1_X8}(i${M});
${XINT16X8_T} vsum${ABC[0:8]} = ${VADDL_X8}(vi0x${ABC[0:8]}, vi1x${ABC[0:8]});
$for M in range(2, ROW_TILE):
$if M + 1 != ROW_TILE:
$if CHANNEL_TILE > 8:
const ${XINT8X8_T} vi${M+1}x${ABC[0:8]} = ${VLD1_X8}(i${M+1}); i${M+1} += 8;
$else:
const ${XINT8X8_T} vi${M+1}x${ABC[0:8]} = ${VLD1_X8}(i${M+1});
$else:
int32x4_t vacc${ABC[0:4]} = vld1q_s32(buffer); buffer += 4;
int32x4_t vacc${ABC[4:8]} = vld1q_s32(buffer); buffer += 4;
vsum${ABC[0:8]} = ${VADDW_X8}(vsum${ABC[0:8]}, vi${M}x${ABC[0:8]});
$if DATATYPE == "QS8":
vacc${ABC[0:4]} = vaddw_s16(vacc${ABC[0:4]}, vget_low_s16(vsum${ABC[0:8]}));
vacc${ABC[4:8]} = vaddw_s16(vacc${ABC[4:8]}, vget_high_s16(vsum${ABC[0:8]}));
$else:
vacc${ABC[0:4]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[0:4]}), vget_low_u16(vsum${ABC[0:8]})));
vacc${ABC[4:8]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[4:8]}), vget_high_u16(vsum${ABC[0:8]})));
$if REQUANTIZATION == "FP32":
float32x4_t vfpacc${ABC[0:4]} = vcvtq_f32_s32(vacc${ABC[0:4]});
float32x4_t vfpacc${ABC[4:8]} = vcvtq_f32_s32(vacc${ABC[4:8]});
vfpacc${ABC[0:4]} = vmulq_f32(vfpacc${ABC[0:4]}, vscale);
vfpacc${ABC[4:8]} = vmulq_f32(vfpacc${ABC[4:8]}, vscale);
$if ARMV8:
vacc${ABC[0:4]} = vcvtnq_s32_f32(vfpacc${ABC[0:4]});
vacc${ABC[4:8]} = vcvtnq_s32_f32(vfpacc${ABC[4:8]});
$else:
vacc${ABC[0:4]} = vreinterpretq_s32_f32(vaddq_f32(vfpacc${ABC[0:4]}, vmagic_bias));
vacc${ABC[4:8]} = vreinterpretq_s32_f32(vaddq_f32(vfpacc${ABC[4:8]}, vmagic_bias));
vacc${ABC[0:4]} = vqsubq_s32(vacc${ABC[0:4]}, vmagic_bias_less_output_zero_point);
vacc${ABC[4:8]} = vqsubq_s32(vacc${ABC[4:8]}, vmagic_bias_less_output_zero_point);
$elif REQUANTIZATION == "RNDNU":
vacc${ABC[0:4]} = vqshlq_s32(vacc${ABC[0:4]}, vleft_pre_shift);
vacc${ABC[4:8]} = vqshlq_s32(vacc${ABC[4:8]}, vleft_pre_shift);
vacc${ABC[0:4]} = vqdmulhq_s32(vacc${ABC[0:4]}, vmultiplier);
vacc${ABC[4:8]} = vqdmulhq_s32(vacc${ABC[4:8]}, vmultiplier);
vacc${ABC[0:4]} = vrshlq_s32(vacc${ABC[0:4]}, vleft_post_shift);
vacc${ABC[4:8]} = vrshlq_s32(vacc${ABC[4:8]}, vleft_post_shift);
#if XNN_ARCH_ARM64
int16x8_t vacc${ABC[0:8]} = vqmovn_high_s32(vqmovn_s32(vacc${ABC[0:4]}), vacc${ABC[4:8]});
#else
int16x8_t vacc${ABC[0:8]} = vcombine_s16(vqmovn_s32(vacc${ABC[0:4]}), vqmovn_s32(vacc${ABC[4:8]}));
#endif
$if REQUANTIZATION != "FP32" or ARMV8:
vacc${ABC[0:8]} = vqaddq_s16(vacc${ABC[0:8]}, voutput_zero_point);
${XINT8X8_T} vout${ABC[0:8]} = ${VQMOVXN_S16}(vacc${ABC[0:8]});
$if CHANNEL_TILE > 8:
vout${ABC[0:8]} = ${VMAX_X8}(vout${ABC[0:8]}, ${VGET_LOW_X8}(voutput_min));
vout${ABC[0:8]} = ${VMIN_X8}(vout${ABC[0:8]}, ${VGET_LOW_X8}(voutput_max));
if XNN_LIKELY(channels >= 8) {
${VST1_X8}(output, vout${ABC[0:8]}); output += 8;
channels -= 8;
} else {
if (channels & 4) {
vst1_lane_u32((void*) output, ${VREINTERPRET_U32_X8}(vout${ABC[0:8]}), 0); output += 4;
vout${ABC[0:8]} = ${VEXT_X8}(vout${ABC[0:8]}, vout${ABC[0:8]}, 4);
}
if (channels & 2) {
vst1_lane_u16((void*) output, ${VREINTERPRET_U16_X8}(vout${ABC[0:8]}), 0); output += 2;
vout${ABC[0:8]} = ${VEXT_X8}(vout${ABC[0:8]}, vout${ABC[0:8]}, 2);
}
if (channels & 1) {
${VST1_LANE_X8}(output, vout${ABC[0:8]}, 0); output += 1;
}
channels = 0;
}
$else:
vout${ABC[0:8]} = ${VMAX_X8}(vout${ABC[0:8]}, voutput_min);
vout${ABC[0:8]} = ${VMIN_X8}(vout${ABC[0:8]}, voutput_max);
if (channels & 4) {
vst1_lane_u32((void*) output, ${VREINTERPRET_U32_X8}(vout${ABC[0:8]}), 0); output += 4;
vout${ABC[0:8]} = ${VEXT_X8}(vout${ABC[0:8]}, vout${ABC[0:8]}, 4);
}
if (channels & 2) {
vst1_lane_u16((void*) output, ${VREINTERPRET_U16_X8}(vout${ABC[0:8]}), 0); output += 2;
vout${ABC[0:8]} = ${VEXT_X8}(vout${ABC[0:8]}, vout${ABC[0:8]}, 2);
}
if (channels & 1) {
${VST1_LANE_X8}(output, vout${ABC[0:8]}, 0);
}
}${" while (channels != 0);" if CHANNEL_TILE > 8 else ""}
}
}